References
- ANDERSEN, P. K., BORGAN, 0., GILL, R. D. AND KEIDING, N. (1993). Statistical Models Based on Counting Processes, Springer-Verlag, New York
- CARR, P., GEMAN, H., MADAN, D. B. AND YOR, M. (2002). 'The fine structure of asset returns: an empirical investigation', Journal of Business, 75, 305-332 https://doi.org/10.1086/338705
- CHAN, T. (1999). 'Pricing contingent claims on stocks driven by Levy processes', The Annals of Applied Probability, 9, 504-528 https://doi.org/10.1214/aoap/1029962753
- Cox, J. C., Ross, S. A. AND RUBINSTEIN, M. (1979). 'Option pricing: a simplified approach', Journal of Financial Economics, 7, 229-263 https://doi.org/10.1016/0304-405X(79)90015-1
- DELBAEN, F. AND SCHACHERMAYER, W. (1996). 'The variance-optimal martingale measure for continuous processes', Bernoulli, 2, 81-105 https://doi.org/10.2307/3318570
- EBERLEIN, E. AND JACOD, J. (1997). 'On the range of options prices', Finance and Stochastics, 1, 131-140 https://doi.org/10.1007/s007800050019
- EBERLEIN, E. AND KELLER, U. (1995). 'Hyperbolic distributions in finance', Bernoulli, 1, 281-299 https://doi.org/10.2307/3318481
- EL KAROUI, N. AND QUENEZ, M.-C. (1995). 'Dynamic programming and pricing of contingent claims in an incomplete market', SIAM Journal on Control and Optimization, 33, 29-66 https://doi.org/10.1137/S0363012992232579
- ELLIOTT, R. J. AND MADAN, D. B. (1998). 'A discrete time equivalent martingale measure' , Mathematical Finance, 8, 127-152 https://doi.org/10.1111/1467-9965.00048
- FOLLMER, H. AND SCHWEIZER, M. (1991). 'Hedging of contingent claims under incomplete information', In Applied Stochastic Analysis (Davis, M. H. A., Elliott, R. J., eds.), 389-414, Gordon and Breach, New York
- FREY, R. (2000). 'Risk minimization with incomplete information in a model for highfrequency data', Mathematical Finance, 10, 215-225 https://doi.org/10.1111/1467-9965.00090
- FRITTELLI, M. (2000). 'Introduction to a theory of value coherent with the no-arbitrage principle', Finance and Stochastics, 4, 275-297 https://doi.org/10.1007/s007800050074
- HUBALEK, F. AND SCHACHERMAYER, W. (1998). 'When does convergence of asset price processes imply convergence of option prices?', Mathematical Finance, 8, 385-403 https://doi.org/10.1111/1467-9965.00060
- JACOD, J. AND SHIRYAEV, A. N. (1987). Limit Theorems for Stochastics Processes, SpringerVerlag, Berlin
- KIRCH, M. AND RUNGGALDIER, W. J. (2004). 'Efficient hedging when asset prices follow a geometric Poisson process with unknown intensities', SIAM Journal on Control and Optimization, 43, 1174-1195 https://doi.org/10.1137/S0363012903423168
- LEE, K. (2002). Hedging of Options when the Price Process has Jumps whose Arrival Rate Depends on the Price History, Ph.D Thesis, Purdue University, West Lafayette
- MADAN, D. B. AND SENETA, E. (1990). 'The variance Gamma (vg) model for share market returns', Journal of Business, 63, 511-524 https://doi.org/10.1086/296519
- PRIGENT, J.-L. (2003). Weak Convergence of Financial Markets, Springer-Verlag, Berlin
- RACHEV, S. T. AND RUSCHENDORF, L. (1994). 'Models for option prices', Theory of Probability and its Applications, 39, 120-152 https://doi.org/10.1137/1139005
- ROUGE, R. AND EL KAROUI, N. (2000). 'Pricing via utility maximization and entropy', Mathematical Finance, 10, 259-276 https://doi.org/10.1111/1467-9965.00093
- SONG, S. AND MYKLAND, P. A. (2006). 'An asymptotic decomposition of hedging errors', Journal of the Korean Statistical Society, 35, 115-142