DOI QR코드

DOI QR Code

Development of Rotor Shaft Manufacturing Process using a Large Friction Welding

대형마찰용접을 이용한 로타샤프트 제조공정개발

  • 정호승 (부산대학교 기계기술연구소) ;
  • 이낙규 (한국생산기술연구원 디지털성형공정팀) ;
  • 박희천 ((주)케이에스피 기술연구소) ;
  • 최성규 ((주)케이에스피 기술연구소) ;
  • 조종래 (한국해양대학교 기계정보공학부)
  • Published : 2007.07.01

Abstract

Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

Keywords

References

  1. H. S. Jeong, T. Shinoda, 1997, Fundamentals and Basic Application of Friction Welding, Journal of KWS, Vol. 15, No.6
  2. 조현수, 서성재, 1997, Inconel 713C와 SCM440의 마찰용접, Journal of KWS, 제15권, 제6호, pp. 564-570
  3. A. Z. Sahin, B. S. Yibas, M. Ahmed, J. Nickel, 1998 Analysis of the Friction Welding Process in Relation to the Welding of Copper and Steel Bar, Journal of Materials Processing Technology, Vol. 82, pp. 127-136 https://doi.org/10.1016/S0924-0136(98)00032-6
  4. 김의환, 민택기, 2001, 인코넬 합금과 스테인레스 강의 마찰용접 특성 연구, 한국공작기계학회논문집, 제10권, 제2호, pp. 73-78
  5. P. D. Sketchly, P. L. Threadgill, I. G. Wright, 2002, Rotary Friction Welding of a Fe3AI based ODS alloy, Materials Science and Engineering, A329-331, pp. 756-762
  6. H. J. Liu, H. Fujii, M. Maeda, K. Nogi, 2003, Tensile Properties and Fracture Locations of Friction-stir-welded Joints of 2017-T351 Aluminum Alloy, Journal of Materials Processing Technology, Vol. 142, pp. 692-696 https://doi.org/10.1016/S0924-0136(03)00806-9
  7. A. A. M. d. silva, A. Meyer, J. F. d. Santos, C. E. F. K wietniewski, T. R. Strohaecker, 2004, Mechanical and Metallurgical Properties of Friction welded TiC Particulate Reinforced Ti-6AI-4V, Composites Science and Technology, Vol. 64, 1495-1501 https://doi.org/10.1016/j.compscitech.2003.10.017
  8. 박희천, 정호승, 조종래, 이낙규, 오중석, 한명섭, 2005, 이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발, 한국마린엔지니어링학회지, 제29권, 제8호, pp. 891-898