DOI QR코드

DOI QR Code

Ambient Oxygen Effects on the Growth of ZnO Thin Films by Pulsed Laser Deposition

  • Park, Jae-Young (School of Materials Science and Engineering, Inha University) ;
  • Kim, Sang-Sub (School of Materials Science and Engineering, Inha University)
  • Published : 2007.06.27

Abstract

ZnO thin films were prepared by pulsed laser deposition on amorphous fused silica substrates at different ambient $O_2$ pressures varying from 0.5 to 500 mTorr, to observe the effect of ambient gas on their crystalline structure, morphology and optical properties. Results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence studies showed that crystallinity, surface features and optical properties of the films significantly depended on the oxygen background pressure during growth. A low oxygen pressure (0.5 mTorr) seems to be suitable for the growth of highly c-axis oriented and smoother films possessing a superior luminescent property. The films grown at the higher $O_2$ pressures (50-500 mTorr) were found to have many defects probably due to an excessive incorporation of oxygen into ZnO lattice. We speculate that the film crystallinity could be affected by the kinetics of atomic arrangement during deposition at the higher oxygen pressures.

Keywords

References

  1. Y. Chen, D. Bagnall and T. Yao, Mater. Sci. Eng., B 75, 190 (2000) https://doi.org/10.1016/S0921-5107(00)00372-X
  2. Y. Kanai, Jpn. J. Appl. Phys. Part 1, 30, 703 (1991) https://doi.org/10.1143/JJAP.30.703
  3. Y.W. Heo, S.J. Park and K. Ip, S.J. Pearton and D.P. Norton, Appl. Phys. Lett. 83, 1128 (2003) https://doi.org/10.1063/1.1594835
  4. K. Minegishi, Y. Koiwai and Y. Kikuchi, K. Yano and M. Kasuga, A. Shimizu, Jpn. J. Appl. Phys., Part 2, 36, L1453 (1997) https://doi.org/10.1143/JJAP.36.L1453
  5. M. Joseph, H. Tabata and T. Kawai, Jpn. J. Appl. Phys., 38, L1205 (1999) https://doi.org/10.1143/JJAP.38.L1205
  6. X.-L. Guo, H. Tabata and T. Kawai, J. Cryst. Growth, 223, 135 (2001) https://doi.org/10.1016/S0022-0248(00)00952-0
  7. K. Iwata, P. Fons and A. Yamada, K. Matsubara and K. Nakahara, H. Takasu, S. Niki, Trans. Mat. Res. Soc. of Japan, 26, 993 (2001)
  8. X. Wang, S. Yang and X. Yang, D. Liu and Y. Zhang, J. Wang and J. Yin, H. C. Ong and CT. Du, J. Cryst. Growth 243, 13 (2002) https://doi.org/10.1016/S0022-0248(02)01372-6
  9. K. K. Kim, J. H. Song and H. J. Jung, W.K. Choi and S. J. Park, J. H. Song, J. Appl. Phys., 87, 3573 (2000) https://doi.org/10.1063/1.372383
  10. E. M. Kaidashev, M. Lorenz and H. von Wenckstem, A. Rahm and H.-C. Semmelhack, K.-H. Han and G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett., 82, 3901 (2003) https://doi.org/10.1063/1.1578694
  11. W. S. Hu, Z. G. Liu and J. Sun, S. N. Zhu and D. Feng, Z. M. Ji, Phys. Chem. Solids., 58, 953 (1997) https://doi.org/10.1016/S0022-3697(96)00224-7
  12. L. C. Chen, Pulsed Laser Deposition of Thin Films, edited by D.B. Chrisely and G.K. Hubler, (Wiley, New York, 1994) p.115
  13. Y. R. Ryu, S. Zhu and S.W Han, H.W. White and J. Vac. Sci. Tecnol. A., 16, 3058 (1998) https://doi.org/10.1116/1.581482
  14. W. S. Hu, Z. G Liu and X.L. Guo, C. Lin and S.N. Zhu, D. Feng, Mat. Lett., 2, 5 (1995) https://doi.org/10.1016/0167-577X(95)00144-1
  15. D. C. Reynolds, D. C. Look and B. Jogni, Solid State Commun., 101, 643 (1997) https://doi.org/10.1016/S0038-1098(96)00697-7
  16. S. W. Jung, W. I. Park and H. D. Cheong, G. C. Yi and H. M. Jang, S. Hong, T. Joo, Appl. Phys. Lett., 80, 1924 (2002) https://doi.org/10.1063/1.1461051
  17. Y. Hen, D. M. Bagnall and H. J. Koh, K. T. Park and K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys., 84, 3912 (1998) https://doi.org/10.1063/1.368595
  18. L. C. Chen, in Pulsed Laser Deposition of Thin Films, edited by D. B. Chrisey and G K. Hubler, (Wiley, New York, 1994) p.340