The Development of Topographic Feature Extraction Method by use of the Seafloor Curvature Measurement

곡률 계산에 의한 해저면 지형요소 추출 기법 개발

  • Kim, Hyun-Sub (Deep-sea Resources Research Division, Korea Ocean Research and Development Institute) ;
  • Jung, Mee-Sook (Deep-sea Resources Research Division, Korea Ocean Research and Development Institute) ;
  • Park, Cheong-Kee (Deep-sea Resources Research Division, Korea Ocean Research and Development Institute)
  • 김현섭 (한국해양연구원 심해연구사업단) ;
  • 정미숙 (한국해양연구원 심해연구사업단) ;
  • 박정기 (한국해양연구원 심해연구사업단)
  • Published : 2007.08.31

Abstract

A seafloor curvature measurement method was developed to extract redundant topographic features from the multi-beam bathymetry data, and then applied to the data of abyssal plain area in the Pacific. Any seafloor might be modeled to a quadratic surface determined in a linear least squares sense, and its curvature could be derived from the eigen values related with quadratic model parameters. The curvature's magnitude as well as polarity showed distinct relationship with geometric characteristics of the seafloor like as ridge and valley. From the investigation of curvature's variation with the number of data in the quadratic surface, the optimal size of data aperture could be applied to real bathymetry data. The application to real data also required the determination of the accompanying threshold values to cope with corresponding topographic features. The calculation method of previous studies were reported to be sensitive to the background noise. The improved curvature measurement method, incorporating the sum of eigen values has reduced unwanted artifacts and enhanced ability to extract lineament features along strike direction. The result of application shows that the curvature measurement method is effective tool for the estimation of a possible mining area in the seamount free abyssal hill area.

해저면에 반복적으로 나타나는 특정 지형요소를 추출할 수 있는 곡률계산법을 개발하여 태평양 심해 평원지역의 수심자료에 적용하였다. 선형 최소자승오차법을 사용하여 해저면을 임의의 2차원 곡면으로 구성할 수 있으며, 해당 곡면의 곡률은 결정된 2차항 계수간의 관계를 이용하여 고유값(eigen value)을 통해 계산하였다. 곡률의 크기와 부호 변화는 해저구릉, 해저계곡과 같이 해저면 지형의 기하학적 형태에 따라 다르게 나타났다. 곡면 구성에 참여하는 자료의 개수에 따른 반응을 비교하여 최적의 곡면 크기를 설정하였고, 계산된 곡률과 지형요소간의 대응관계를 설정하기 위한 최적의 한계값을 실제 자료와의 비교를 통해 결정하였다. 또한, 배경잡음에 민감하게 반응하는 기존 곡률 계산 방법을 개선하여 고유값의 합을 사용하는 새로운 곡률 계산법을 적용한 결과 추출한 지형요소간의 주향방향 연장성을 향상시킬 수 있었다. 곡률계산에 의한 지형요소 추출법은 망간단괴 채광 가능지역 추출을 위한 효과적인 방법임을 확인할 수 있었다.

Keywords

References

  1. 김현섭, 2007, 북동 태평양 클라리온-클리퍼톤 지역 망간단괴 부 존량과 지형변화의 상관관계 정량적 분석 및 채광가능지역 추 출을 위한 분석 도구 개발, 공학박사 학위논문, 서울대학교
  2. 정미숙, 이태국, 김현섭, 고영탁, 박정기, 김기현, 2006, 웨이브렛 디지털 필터를 이용한 북동태평양 KR5 지역의 지형 분석방법, 지구물리, 9, 311-320
  3. 해양수산부, 2007, 2006 심해저 광물자원탐사 보고서, 1권, 한국 해양연구원
  4. Canny, J., 1986, A computational approach to edge detection, Trans. on Pattern Anal. and Machine Intelligence, PAMI-8, 6, 679-698
  5. Davis, J. C., 1986, Statistics and data analysis in geology, 2nd Ed., John Willey and Sons
  6. Edwards, M. H., Fornari, D. J., Malinverno, A., and Ryan, W. B. F., 1991, The regional tectonic fabric of the East Pacific Rise from $12^{\circ}$50'N to $15^{\circ}$ 10'N, Journal of Geophysical Research, 96(B5), 7995-8017 https://doi.org/10.1029/91JB00283
  7. Evans, I. S., 1980, An integrated system of terrain analysis and slope mapping, Zeitschrift fur Geomorphologie, N.F., Supplementband, 36, 274-295
  8. Fox, C. G., and Hayes, D. E., 1985, Quantitative methods for analyzing roughness of the seafloor, Reviews of Geophysics, 23, 1-48 https://doi.org/10.1029/RG023i001p00001
  9. Goff, J. A., and Jordan, T. H., 1988, Stochastic modeling of seafloor morphology: Inversion of Sea Beam data for secondorder statistics, Journal of Geophysical Research, 93(B13), 13589-13608 https://doi.org/10.1029/JB093iB11p13589
  10. Goff, J. A., 1993, Abyssal hill segmentation: Quantitative analysis of the East Pacific Rise flanks $7^{\circ}$ S - $9^{\circ}$S, Journal of Geophysical Research, 98, 13581-13862 https://doi.org/10.1029/93JA00635
  11. Kennett, J., 1982, Marine Geology, Englewood Cliffs, NJ, Prentice-Hall
  12. Little, S. A., and Smith, D. K., 1996, Fault scarp identification in side-scan sonar and bathymetry images from the Mid- Atlantic Ridge using wavelet-based filters, Marine Geophysical Researches, 18, 741-755 https://doi.org/10.1007/BF00313884
  13. Little, S. A., 1994, Wavelet analysis of seafloor bathymetry: an example, in Foufoula-Georgiou, E., and Kumar, P. Ed., Wavelets in Geophysics, Academic Press, 167-182
  14. Macdonald, K. C., Fox, P. J., Alexander, R. T., Pockalny, R. and Gente, P., 1996, Volcanic growth faults and the origin of Pacific abyssal hills, Nature, 380, 125-129 https://doi.org/10.1038/380125a0
  15. McCoy, J., and Johnston, K., 2001, Using ArcGIS Spatial Analyst, ESRI, New York
  16. Menke, W., 1989, Geophysical data analysis: Discrete inverse theory, Academic, San Diego, California
  17. Shaw, P. R., and Lin J., 1993, Cause and consequences of variations in faulting style at the mid-Atlantic ridge, Journal of Geophysical Research, 98(B12), 21839-21851 https://doi.org/10.1029/93JB01565
  18. Shaw, P. R., 1992, Ridge segmentation, faulting, and crustal thickness in the Atlantic, Nature, 358, 490-493 https://doi.org/10.1038/358490a0
  19. Shaw, P. R., and Smith, D. K., 1990, Robust description of statistically heterogeneous seafloor topography through its slope distribution, Journal of Geophysical Research, 95, 8705-8722 https://doi.org/10.1029/JB095iB06p08705
  20. Zevenbergen, L. W., and Thorne, C. R., 1987, Quantitative analysis of land surface topography, Earth Surface Process and Landforms, 12, 47-56 https://doi.org/10.1002/esp.3290120107