참고문헌
- Auricchio, F. and Sacco, E. (1999), "A temperature-dependent beam for shape-memory alloys: costitutive modelling, finite-element implementation and numerical simulations", Comput. Methods Appl. Mech. Eng., 174, 171-190. https://doi.org/10.1016/S0045-7825(98)00285-0
- Brinson, C. (1993), "One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable", J. Intell. Mat. Strut., 4, 229-242. https://doi.org/10.1177/1045389X9300400213
- Brinson, C. L. and Huang, M. S. (1996), "Simplifications and comparisons of shape memory alloy constitutive models", J. Intell. Mat. Struct., 7, 108-114. https://doi.org/10.1177/1045389X9600700112
- Brocca, M., Brinson, L. C. and Bazant, Z. P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J. Mech. Phy. Solids, 50, 1051-1077. https://doi.org/10.1016/S0022-5096(01)00112-0
- Di Lecce, M. (1997), Fondamenti di Aerotecnica, IBN Editore, Rome.
- Drela, M. (2001), XFOIL v.6.9 User Guide, MIT Aero & Astro Harold Youngren Aerocraft, Inc.
- Ezley, D. M., Aarash, Y. N. and Wadley, H. N. G. (2005), "A shape memory based multifunctional structural actuator panel", Int. J. Solids Struct., 42, 1943-1955. https://doi.org/10.1016/j.ijsolstr.2004.05.034
- FLemings, G. A. and Burner, A. W. (1999), "Deformation measurements of smart aerodynamic surfaces", 44th SPIE International Symposyum on Optical Science, Engineering and Instrumentation.
- Garner, L. J., Wilson, L. N., Lagoudas, D. C. and Rediniotis, O. K. (2000), "Development of a shape memory alloy actuated biomimetic vehicle", Smart. Mat. Struct. 9, 673-783. https://doi.org/10.1088/0964-1726/9/5/312
- Govindjee, S. and Garrett, J. H. (2000), "A computational model for shape memory alloys", Int. J. Solids Struct., 37, 735-760. https://doi.org/10.1016/S0020-7683(99)00048-7
- Huang, W. (2002) "On the selection of shape memory alloys for actuators", Materials and Design, 23, 11-19. https://doi.org/10.1016/S0261-3069(01)00039-5
- Icardi, U. (2001), "Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments", Composites Part B, 32, 259-267. https://doi.org/10.1016/S1359-8368(00)00062-7
- Kroo, I. (1997), Applied Aerodynamics: a Digital Textbook, Version 4.1, Stanford, Desktop Aeronautics, Inc.
- Lu, K-J. and Kota, S., (2002), "Compliant mechanism synthesis for shape-change applications: preliminary results", SPIE Conference on Smart Structures and Materials, 4693, 161-172.
- Lu, K. Z. and Weng, G. J. (1997), "Martensitic transformations and stress-strain relations of shape-memory alloys", J. Mech. Phy. Solids, 45, 1905-1928. https://doi.org/10.1016/S0022-5096(97)00022-7
- Monner, H. P. (2001), "Realization of an optimized wing camber by using formvariable flap structures", Aerosp. Sci. Technol., 5, 445-455. https://doi.org/10.1016/S1270-9638(01)01118-X
- Neal, D. A., Matthew, C. G. Johnston, C. O., Robertshaw, H. H., Mason, W. H. and Inman, D. J. (2004), "Design and wind-tunnel analysis of a fully adaptive aircraft configuration", AIAA paper 2004-1727.
- Strelec, J. K., Lagoudas, C. C., Khan, M. A. and Yen, J. (2003), "Design and implementation of a shape memory alloy actuated reconfigurable airfoil", J. Intell. Mat. Syst. Struct., 14, 257-273. https://doi.org/10.1177/1045389X03034687
- Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H. and Lexcellent, C. (1995), "Phenomenological analysis on subloops and cyclic behaviour in shape memory alloys under mechanical and/or thermal loads", Mech. Mat., 19, 281-292. https://doi.org/10.1016/0167-6636(94)00038-I
- Tanaka, K., Nishimura, F. and Tobushi, H. (1995), "Transformation start lines in TiNi and Fe-based shape memory alloys after incomplete transformations induced by mechanical and/or thermal loads", Mechanics of Materials, 19, 271-280. https://doi.org/10.1016/0167-6636(94)00035-F
- Talay, T. A. (1975), "Introduction to the aerodynamics of flight", Langley Research Centre, NASA SP367.
- Trochu, F., Sacepe, N., Volkov, O. and Turenne, S. (1999), "Characterization of NiTi shape memory alloys using dual kriging interpolation", Mater. Sci. Eng., A273, 395-399.
- Van Blyenburgh, P. (1999), "UAVs: an overview", Air and Space Europe, 1, 43-47. https://doi.org/10.1016/S1290-0958(00)88869-3
피인용 문헌
- Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing vol.30, pp.2, 2017, https://doi.org/10.1016/j.cja.2017.02.001
- Modeling and Testing of a Morphing Wing in Open-Loop Architecture vol.47, pp.3, 2010, https://doi.org/10.2514/1.46480
- Nonlinear analysis for a novel actuator vol.45, pp.3, 2010, https://doi.org/10.1016/j.mechmachtheory.2009.10.003
- Airfoil Structural Morphing Based on S.M.A. Actuator Series: Numerical and Experimental Studies vol.22, pp.10, 2011, https://doi.org/10.1177/1045389X11416032
- Double displacement coupled forced response for electromechanical integrated electrostatic harmonic drive vol.29, pp.5, 2008, https://doi.org/10.12989/sem.2008.29.5.581
- Airfoil morphing based on SMA actuation technology vol.86, pp.4, 2014, https://doi.org/10.1108/AEAT-10-2012-0194
- An investigation of shape memory alloys as actuating elements in aerospace morphing applications vol.24, pp.8, 2017, https://doi.org/10.1080/15376494.2016.1196772
- A Review of Morphing Aircraft vol.22, pp.9, 2011, https://doi.org/10.1177/1045389X11414084
- Speed control of an electromechanical integrated electrostatic harmonic actuator vol.34, pp.4, 2010, https://doi.org/10.1016/j.precisioneng.2010.03.007
- A review on shape memory alloys with applications to morphing aircraft vol.23, pp.6, 2014, https://doi.org/10.1088/0964-1726/23/6/063001
- Nonlinear Dynamic Characteristics and Optimal Control of SMA Composite Wings Subjected to Stochastic Excitation vol.2015, 2015, https://doi.org/10.1155/2015/523723
- Double-Coupled Dynamics for the Electromechanical Integrated Electrostatic Harmonic Drive vol.36, pp.2, 2008, https://doi.org/10.1080/15397730802010042