DOI QR코드

DOI QR Code

Free vibration analysis of rotating tapered blades using Fourier-p superelement

  • 투고 : 2006.04.25
  • 심사 : 2007.04.19
  • 발행 : 2007.09.30

초록

A numerically efficient superelement is proposed as a low degree of freedom model for dynamic analysis of rotating tapered beams. The element uses a combination of polynomials and trigonometric functions as shape functions in what is also called the Fourier-p approach. Only a single element is needed to obtain good modal frequency prediction with the analysis and assembly time being considerably less than for conventional elements. The superelement also allows an easy incorporation of polynomial variations of mass and stiffness properties typically used to model helicopter and wind turbine blades. Comparable results are obtained using one superelement with only 14 degrees of freedom compared to 50 conventional finite elements with cubic shape functions with a total of 100 degrees of freedom for a rotating cantilever beam. Excellent agreement is also shown with results from the published literature for uniform and tapered beams with cantilever and hinged boundary conditions. The element developed in this work can be used to model rotating beam substructures as a part of complete finite element model of helicopters and wind turbines.

키워드

참고문헌

  1. Ahmadian, M.T. and Zangench, M.S. (2002), 'Vibration analysis of orthotropic rectangular plates using superelements', Comput. Meth. Appl. Mech. Eng., 191(19-20), 2097-2103 https://doi.org/10.1016/S0045-7825(01)00370-X
  2. Al-Qaisia, A.A. and Al-Bedoor, B.O. (2005), 'Evaluation of different methods for the consideration of the effect of rotation on the stiffening of rotating beams', J. Sound Vib., 280(3-5), 531-553 https://doi.org/10.1016/j.jsv.2003.12.049
  3. Al-Sadder, S.Z., Othman, R.A. and Shatnawi, A.S. (2006), 'A simple finite element formulation for large deflection analysis of nonprismatic slender beams', Struct. Eng. Mech., 24(6), 647-664 https://doi.org/10.12989/sem.2006.24.6.647
  4. Banerjee, J.R. (2000), 'Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method', J. Sound Vib., 233(5), 857-875 https://doi.org/10.1006/jsvi.1999.2855
  5. Banerjee, J.R. Su, H. and Jackson, D.R. (2006), 'Free vibration of rotating tapered beams using dynamic stiffness method', J. Sound Vib., 298, 1034-1054 https://doi.org/10.1016/j.jsv.2006.06.040
  6. Belyi, M.V. (1993), 'Superelement method for transient dynamic analysis of structural systems', Int. J. Numer. Method. Eng., 36(13), 2263-2286 https://doi.org/10.1002/nme.1620361308
  7. Cai, G.P., Hong, J.Z. and Yang, S.X. (2004), 'Model study and active control of a rotating flexible cantilever beam', Int. J. Mech. Sci., 46(6), 871-889 https://doi.org/10.1016/j.ijmecsci.2004.06.001
  8. Cardona, A. (2000), 'Superelements modelling in flexible multibody dynamics', Multibody Syst. Dyn., 4(2-3), 245-266 https://doi.org/10.1023/A:1009875930232
  9. Chandiramani, N.K., Librescu, L. and Shete, C.D. (2002), 'On the free-vibration of rotating composite beams using a higher-order shear formulation', Aerospace Sci. Tech., 6(8), 545-561 https://doi.org/10.1016/S1270-9638(02)01195-1
  10. Datta, P.K. and Ganguli, R. (1990), 'Vibration characteristics of a rotating blade with localized damage including the effects of shear deformation and rotary inertia', Comput. Struct., 36(6), 1129-1133 https://doi.org/10.1016/0045-7949(90)90221-M
  11. Fan, J.P., Tang, C.Y. and Chow, C.L. (2004), 'A multilevel superelement technique for damage analysis', Int. J. Damage Mech., 13(2), 187-199 https://doi.org/10.1177/1056789504041059
  12. Fung, E.H.K., Zou, J.Q. and Lee, H.W.J. (2004), 'Lagrangian formulation of rotating beam with active constrained layer damping in time domain analysis', J. Mech. Des., 126(2), 359-364 https://doi.org/10.1115/1.1649969
  13. Furta, S.D. (2003), 'Linear vibrations of a rotating elastic beam with an attached point mass', J. Eng. Math., 46(2), 165-188 https://doi.org/10.1023/A:1023985702887
  14. Ganguli, R. (2001) 'A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data', J. Intelligent Mater. Syst. Struct., 12(6), 397-407 https://doi.org/10.1106/104538902022598
  15. Ganguli, R., Chopra, I. and Weller, W.H. (1998), 'Comparison of calculated vibratory rotor hub loads with experimental data', J. Am. Helicopter Soc., 43(4), 312-318 https://doi.org/10.4050/JAHS.43.312
  16. Hodges, D.J. and Rutkowsky, M.J. (1981), 'Free vibration analysis of rotating beams by a variable order finite element method', AIAA J., 19(11), 1459-1466 https://doi.org/10.2514/3.60082
  17. Hosseini, S.A.A. and Khadem, S.E. (2005), 'Free vibration analysis of rotating beams with random properties', Struct. Eng. Mech., 20(3), 293-312 https://doi.org/10.12989/sem.2005.20.3.293
  18. Houmat, A (2001), 'A sector Fourier-p element for free vibration analysis of sectorial membranes', Comput. Struct., 79(12), 1147-1152 https://doi.org/10.1016/S0045-7949(01)00013-X
  19. Houmat, A. (2001), 'A sector Fourier p-element applied to free vibration analysis of sectorial plates', J. Sound Vib., 243(2), 269-282 https://doi.org/10.1006/jsvi.2000.3410
  20. Hu, K., Vlahopoulos, N. and Mourelatos, Z.P. (2002), 'A finite element formulation for coupling rigid and flexible body dynamics of rotating beams', J. Sound Vib., 255(3), 603-630 https://doi.org/10.1006/jsvi.2002.5196
  21. Jiang, J. and Olson, M.D. (1993), 'A super element model for nonlinear-analysis of stiffened box structures', Int. J. Numer. Method. Eng., 36(13), 2203-2217 https://doi.org/10.1002/nme.1620361305
  22. Khulief, Y.A. (2001), 'Vibration suppression in rotating beams using active modal control', J. Sound Vib., 242(2), 681-699 https://doi.org/10.1006/jsvi.2000.3385
  23. Koko, T.S. (1992), 'Vibration analysis of stiffened plates by super elements', J. Sound Vib., 158(1), 149-167 https://doi.org/10.1016/0022-460X(92)90670-S
  24. Kumar, S., Roy, N. and Ganguli, R. (2007), 'Monitoring low cycle fatigue damage in turbine blade using vibration characteristics', Mech. Syst. Signal Processing, 21(1), 480-501 https://doi.org/10.1016/j.ymssp.2005.02.011
  25. Lee, S.Y., Lin, S.M. and Wu, C.T. (2004), 'Free vibration of a rotating nonuniform beam with arbitrary pretwist, an elastically restrained root and a tip mass', J. Sound Vib., 273(3), 477-492 https://doi.org/10.1016/S0022-460X(03)00506-6
  26. Leung, A.Y.T. and Chan, J.K.W. (1998),'Fourier p-element for the analysis of beams and plates', J. Sound Vib., 212(1), 179-185 https://doi.org/10.1006/jsvi.1997.1423
  27. Leung, A.Y.T. and Zhu, B. (2004), 'Fourier p-elements for curved beam vibrations', Thin Wall. Struct., 42, 39-57 https://doi.org/10.1016/S0263-8231(03)00122-8
  28. Lin, H.Y. and Tsai, Y.C. (2005), 'On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses', Struct. Eng. Mech., 21(3), 351-367 https://doi.org/10.12989/sem.2005.21.3.351
  29. Lin, H.Y and Tsai, Y.C. (2006), 'On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias', Struct. Eng. Mech., 22(6), 701-717 https://doi.org/10.12989/sem.2006.22.6.701
  30. Lin, S.M., Lee, S.Y. and Wang, W.R. (2004), 'Dynamic analysis of rotating damped beams with an elastically restrained root', Int. J. Mech. Sci., 46(5), 673-693 https://doi.org/10.1016/j.ijmecsci.2004.05.011
  31. Munteanu, M.G., Ray, P. and Gogu, G. (2004), 'Study of the natural frequencies for two and three-dimensional curved beams under rotational movement', Proc. of the Institution of Mechanical Engineers Part K-Journal of Multi Body Dynamics, 218(1), 9-18
  32. Nurse, A.D. (2001), 'New superelements for singular derivative problems of arbitrary order', Int. J. Numer. Method. Eng., 50(1), 135-146 https://doi.org/10.1002/1097-0207(20010110)50:1<135::AID-NME25>3.0.CO;2-7
  33. Pawar, P.M. and Ganguli, R. (2005), 'Modeling multi-layer matrix cracking in thin walled composite rotor blades', J. Am. Helicopter Soc., 50(4), 354-366 https://doi.org/10.4050/1.3092872
  34. Pawar, P.M. and Ganguli, R. (2006), 'Modeling progressive damage accumulation in thin walled composite beams for rotor blade applications', Compos. Sci. Tech., 66(13), 2337-2349 https://doi.org/10.1016/j.compscitech.2005.11.033
  35. Qu, Z.P. and Selvam, R.P. (2000), 'Dynamic superelement modeling method for compound dynamic systems', AIAA J., 38(6), 1078-1083 https://doi.org/10.2514/2.1070
  36. Thakkar, D. and Ganguli, R. (2004), 'Dynamic response of rotating beams with piezoceramic actuation', J. Sound Vib., 270(4-5), 729-753 https://doi.org/10.1016/S0022-460X(03)00189-5
  37. Thakkar, D. and Ganguli, R. (2006), 'Use of single crystal and soft piezoceramics for alleviation of flow separation induced vibration in a smart helicopter rotor', Smart Mater. Struct., 15(2), 331-341 https://doi.org/10.1088/0964-1726/15/2/013
  38. Tkachev, V.V. (2000), 'The use of superelement approach for the mathematical simulation of reactor structure dynamic behaviour', Nucl. Eng. Des., 196(1), 101-104 https://doi.org/10.1016/S0029-5493(99)00230-7
  39. Tufekci, E. and Arpaci, A. (2006), 'Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations', Struct. Eng. Mech., 22(2), 131-150 https://doi.org/10.12989/sem.2006.22.2.131
  40. Vaziri, R. (1996), 'Impact analysis of laminated composite plates and shells by super finite elements', Int. J. Impact Eng., 18(7-8), 765-782 https://doi.org/10.1016/S0734-743X(96)00030-9
  41. Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2006), 'Wave propogation characteristics of rotating uniform Euler-Bernoulli beams', CMES-Comput. Model. Eng. Sci., 16(3), 197-208
  42. Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), 'Free vibration and wave propogation analysis of uniform and tapered rotating beams using spectrally formulated finite elements', Int. J. Solids Struct., 44(18-19), 5875-5893 https://doi.org/10.1016/j.ijsolstr.2007.02.002
  43. Wang, G and Wereley, N.M. (2004), 'Free vibration analysis of rotating blades with uniform tapers', AIAA J., 42(12), 2429-2437 https://doi.org/10.2514/1.4302
  44. West, L.J., Bardell, N.S., Dunsdon, J.M. and Loasby, P.M. (1997), 'Some limitations associated with the use of K -orthogonal polynomials in hierarchial versions of the finite element method', The Sixth Int. Conf. on Recent Advances in Structural Dynamics, Southhampton, UK., 217-227
  45. Wright, A.D., Smith, C.E., Thresher, R.W. and Wang, J.L.C. (1982), 'Vibration modes of centrifugally stiffened beams', J. Appl. Mech., 49(2), 197-202 https://doi.org/10.1115/1.3161966
  46. Yang, J.B., Jiang, L.J. and Chen, D.C.H. (2004), 'Dynamic modelling and control of a rotating Euler-Bernouli beam', J. Sound Vib., 274(3-5), 863-875 https://doi.org/10.1016/S0022-460X(03)00611-4
  47. Yongqiang, L. (2006), 'Free vibration analysis of plate using finite strip Fourier p-element', J. Sound Vib., 294(4-5), 1051-1059 https://doi.org/10.1016/j.jsv.2006.01.003
  48. Yoo, H.H., Seo, S. and Huh, K (2002), 'The effect of a concentrated mass on the modal characteristics of a rotating cantilever beam', Proc. of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 216(2), 151-163
  49. Zhao, J. and Dewolf, J.T. (2007), 'Modeling and damage detection for cracked I-shaped steel beams', Struct. Eng. Mech., 25(2), 131-146 https://doi.org/10.12989/sem.2007.25.2.131
  50. Zivkovic, M., Kojic, M. Slavkovic, R. et al. (2001), 'A general beam finite element with deformable cross-section', Comput. Meth. Appl. Mech. Eng., 190(20-21), 2651-2680 https://doi.org/10.1016/S0045-7825(00)00259-0

피인용 문헌

  1. Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution vol.46, pp.6, 2011, https://doi.org/10.1007/s11012-010-9383-z
  2. Basic Displacement Functions in Analysis of Centrifugally Stiffened Tapered Beams vol.36, pp.5, 2011, https://doi.org/10.1007/s13369-011-0071-7
  3. Derivation of an efficient element for free vibration analysis of rotating tapered Timoshenko beams using basic displacement functions vol.226, pp.11, 2012, https://doi.org/10.1177/0954410011422479
  4. Stiff string approximations in Rayleigh–Ritz method for rotating beams vol.219, pp.17, 2013, https://doi.org/10.1016/j.amc.2013.03.017
  5. Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition vol.48, pp.7, 2013, https://doi.org/10.1007/s11012-013-9695-x
  6. Hybrid stiff-string–polynomial basis functions for vibration analysis of high speed rotating beams vol.87, pp.3-4, 2009, https://doi.org/10.1016/j.compstruc.2008.09.008
  7. Modal tailoring and closed-form solutions for rotating non-uniform Euler–Bernoulli beams vol.88, 2014, https://doi.org/10.1016/j.ijmecsci.2014.08.003
  8. The coupled vibration in a rotating multi-disk rotor system vol.53, pp.1, 2011, https://doi.org/10.1016/j.ijmecsci.2010.10.001
  9. Benchmark analytical solutions from beams with shared eigenpair vol.106, 2016, https://doi.org/10.1016/j.ijmecsci.2015.12.017
  10. Vibration analysis of a cracked rotating tapered beam using the p-version finite element method vol.47, pp.7, 2011, https://doi.org/10.1016/j.finel.2011.02.013
  11. Free Vibration Analysis of Centrifugally Stiffened Tapered Functionally Graded Beams vol.20, pp.5, 2013, https://doi.org/10.1080/15376494.2011.627634
  12. Violin string shape functions for finite element analysis of rotating Timoshenko beams vol.47, pp.9, 2011, https://doi.org/10.1016/j.finel.2011.04.002
  13. Integrated aeroelastic and control analysis of wind turbine blades equipped with microtabs vol.75, 2015, https://doi.org/10.1016/j.renene.2014.09.032
  14. Effect of cracks on nonlinear flexural vibration of rotating Timoshenko functionally graded material beam having large amplitude motion 2017, https://doi.org/10.1177/0954406217694213
  15. Rotorcraft research in India: recent developments vol.82, pp.5, 2010, https://doi.org/10.1108/00022661011092956
  16. Tailoring the second mode of Euler-Bernoulli beams: an analytical approach vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.773
  17. Analysis of weak solution of Euler–Bernoulli beam with axial force vol.298, 2017, https://doi.org/10.1016/j.amc.2016.11.019
  18. Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method vol.59, pp.1, 2016, https://doi.org/10.12989/sem.2016.59.1.001
  19. Dynamic characterization of thickness tapered laminated composite plates vol.22, pp.16, 2016, https://doi.org/10.1177/1077546314564588
  20. Vibration analysis of rotating 3D beams by the p-version finite element method vol.65, 2013, https://doi.org/10.1016/j.finel.2012.10.008
  21. Rotating Beams and Nonrotating Beams With Shared Eigenpair vol.76, pp.5, 2009, https://doi.org/10.1115/1.3112741
  22. Basic displacement functions for centrifugally stiffened tapered beams 2010, https://doi.org/10.1002/cnm.1365
  23. Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials vol.89, pp.11-12, 2011, https://doi.org/10.1016/j.compstruc.2010.10.012
  24. Closed-form solutions and uncertainty quantification for gravity-loaded beams vol.51, pp.6, 2016, https://doi.org/10.1007/s11012-015-0314-x
  25. A Collocation Approach for Finite Element Basis Functions for Euler-Bernoulli Beams Undergoing Rotation and Transverse Bending Vibration vol.13, pp.4, 2012, https://doi.org/10.1080/15502287.2012.682194
  26. Free Vibration of a Functionally Graded Rotating Timoshenko Beam Using FEM vol.16, pp.2, 2013, https://doi.org/10.1260/1369-4332.16.2.405
  27. Random Eigenvalue Characterization for Free Vibration of Axially Loaded Euler–Bernoulli Beams vol.56, pp.9, 2018, https://doi.org/10.2514/1.J056942
  28. Effect of Taper on Free Vibration of Functionally Graded Rotating Beam by Mori-Tanaka Method pp.2250-0553, 2018, https://doi.org/10.1007/s40032-018-0477-z
  29. Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method vol.34, pp.2, 2007, https://doi.org/10.12989/sem.2010.34.2.231
  30. Physics based basis function for vibration analysis of high speed rotating beams vol.39, pp.1, 2007, https://doi.org/10.12989/sem.2011.39.1.021
  31. On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass vol.45, pp.1, 2013, https://doi.org/10.12989/sem.2013.45.1.069
  32. Automated static condensation method for local analysis of large finite element models vol.61, pp.6, 2007, https://doi.org/10.12989/sem.2017.61.6.807
  33. Dynamic response and stability of a spinning turbine blade subjected to pitching and yawing vol.7, pp.4, 2019, https://doi.org/10.1007/s40435-019-00555-4
  34. Natural frequencies of a rotating curved cantilever beam: A perturbation method-based approach vol.234, pp.9, 2007, https://doi.org/10.1177/0954406219899117
  35. Minimum Diameter of Optimally Located Damping Wire to Maximize the Fundamental Frequencies of Rotating Blade Using Timoshenko Beam Theory vol.21, pp.7, 2021, https://doi.org/10.1142/s0219455421500905