• Title/Summary/Keyword: helicopter blades

Search Result 104, Processing Time 0.028 seconds

NUMERICAL TECHNIQUES FOR HOVERING ROTOR PERFORMANCE ANALYSIS (호버링 로터 성능해석을 위한 수치기법 연구)

  • Kim, C.W.;Park, Y.M.;Jang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.151-154
    • /
    • 2006
  • In the present paper, hovering performance analyses of proprotor and helicopter rotor blades were performed by using FLUENT software. As a proprotor, TRAM(Tilt Rotor Aeroacoustic Model) was selected and performance analysis was carried out with mesh adaptation for more elaborate solution. As a helicopter rotor blades, two bladed Caradonna and Tung's rotor and four-bladed BO-105 helicopter rotor blades were selected. In case of Caradonna and Tung's rotor, vortex trajectory was compared with experimental data to inspect the vortex convection capability of the present flow solver. For the final case, performance of BO-105 helicopter rotor blades was investigated and compared with experimental data. After performance analyses of proprotor and helicopter rotors, it was shown that the present solver showed reasonable vortex strength, wake geometry and thurst coefficient distributions. But power coefficient was somewhat overestimated about $10%{\sim}15%$ regard less of mesh adaptation.

  • PDF

Vibration Prediction of Helicopter Airframe (헬리콥터 동체의 진동 예측)

  • Yun, Chul Yong;Kim, Do-Hyung;Kang, Hee Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Comparisons of Rotor Performance and Noise between Candidate Light Civil Helicopters (민수헬기 대상기종 로터 공력성능 및 소음 비교)

  • Chung, Kihoon;Kang, Hee Jung;Kim, Do-Hyung;Yun, Chul Yong;Kim, Seungho;Park, Kuhwan;Lee, Sang-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.726-733
    • /
    • 2013
  • The rotor blade of helicopter is the core component determining helicopter performance and requiring low noise and low vibration because the blade becomes the major source of noise during flight. The performance analysis of candidates rotor blades is very critical because LCH(Light Civil Helicopter) will be developed parallel with LAH(Light Armed Helicopter) as an international upgrade program based on the existing platform of foreign civil helicopter. This research was aimed to recognize the performance of the candidates rotor blades compared with the newly developed foreign rotor blades and to investigate the feasibility about developing korea unique shape rotor blades by analysis the rotor performance and noise. The result of this research can be used for the target performance index during negotiation with foreign helicopter company and developing korea unique shape rotor blades.

Rotating Frequency Analysis of a Helicopter Rotor Blade with Swpt Tips (후퇴각 날개끝이 있는 헬리콥터 로터깃의 회전주파수 해석)

  • ;Yang, Wei Dong
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2000
  • To reduce the drag rise on the advancing helicopter rotor blade tips, the tip of the blade is modified to have sweep, anhedral and pretwist. The equations of motion of rotor blade with these tip angles were derived using Hamilton principle, programmed using FORTRAN and named as ARMDAS(Advanced Rotorcraft Multidisplinary Design and Analysis System). Rotating frequency analysis of rotor blades with swept tipe was performed that is necessary in conceptual and preliminary design phases of the helicopter design. Vibration analysis of non-rotating blades was also accomplished and compared with MSC/NASTRAN resutls for the basis of comparison with the vibration test data. The rotating frequency analysis of blades with an actual rotor blade data was also performed to verify coded program and to check the possibility of a resonance of an actual rotor blade at the specific rotating speed.

  • PDF

A Numerical Analysis on the Vibration Characteristics of Rotating Composite Blades (회전하는 복합재료 블레이드의 진동특성에 대한 수치해석)

  • Kee, Young-Jung;Song, Keun-Woong;Kim, Deog-Kwan;Shim, Jeong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.300-303
    • /
    • 2006
  • The rotor blade of a helicopter is the key structural units and provides three components such as vertical lifting force, horizontal propulsive force and control force. With advancements in aerospace technology, composite materials have been widely used in lightweight structures. In addition, composites show great potential on the design of rotor blades due to the advantages of strength, durability and weight of the materials. In the operational condition of a helicopter, it is required the vibration characteristics of the rotating blades for avoiding resonance and analysis of efficient performance prediction et al. In this study, the CAMRAD-II is used for analyzing the vibration characteristics of rotating composite blades. The effects of rotating speed and collective angles are investigated. Also, the numerical results are compared with experimental data.

  • PDF

Design and Manufactures of Cyclocopter Composite Wing Blades (사이클로콥터의 복합재료 Wing blade 설계 및 제작)

  • 김승조;윤철용;백병주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.187-190
    • /
    • 2000
  • Cyclocopter is air vehicle to vertically take-off and land like a helicopter. This is an efficient and quiet means of being able to direct thrust compared to a helicopter. The rotor consists of several blades rotating about a horizontal axis perpendicular to the direction of normal flight. The direction of blade span is parallel to rotating axis and both end roots are connected to the hub to resist centrifugal force and to transmit the power. The pitch of the individual blades to the tangent of the circle of the blade's path is varied cyclically to gain thrust. In the paper, the design and manufactures of cyclocopter rotor blades are presented. Stress at the roots of cyclocopter blades is great due to centrifugal and aerodynamic forces and aeroelastic instabilities appear. The blades consist of main spar, front spar, polyurethan foam, weight, and skin and spars and skin are made of glass/epoxy composite.

  • PDF

A Study of Fatigue Load for Rotor Blades of the Utility Helicopter (다목적 헬리콥터 로터 블레이드 피로하중에 대한 연구)

  • Oh, Man-Seok;Kim, Hyun-Duk;Park, Jung-Sun;Gi, Yeong-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.648-653
    • /
    • 2007
  • In this study, we have generated fatigue load spectrum that is using to prediction of life time for the helicopter rotor blades. We derive utility helicopter missions for the sake of generating load spectrum. Helix and Felix are standard loading sequences which relate to the main rotors of helicopters with articulated and semi-rigid rotors respectively. We got scale factors which is applied to specific case and it did be obtained through the finite element analysis tools. The fatigue life of the rotor blade is estimated by using MSC/Fatigue. We suggest that generated our fatigue load spectrum in conjunction with small utility helicopter should use to rotor blade fatigue test of the korea helicopter program.

  • PDF

Structural Dynamic Analysis of Low Vibrating Composite Helicopter Rotor Blades (복합재료 헬리콥터 로터 블레이드의 저진동 설계에 관한 연구)

  • Kee, Young-Jung;Shim, Jeong-Wook;Lee, Myeong-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.902-905
    • /
    • 2004
  • Recently, the composite materials are widely used for manufacturing the helicopter rotor blades. furthermore, composites show great potential on the design of rotor blades due to the advantages of strength, durability and weight of the materials. To keep with this advantages, it is necessary to calculate natural frequencies of a rotating blades for avoiding resonance. In this paper, the structural design process of airfoil cross section is introduced, and natural frequencies of composite rotor blades with variable rpm we investigated.

  • PDF

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

Determination of the Principal Directions of Composite Helicopter Rotor Blades with Arbitrary Cross Sections

  • Oh, Taek-Yul;Choi, Myung-Jin;Yu, Yong-Seok;Chae, Kyung-Duck
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.291-297
    • /
    • 2000
  • Modern helicopter rotor blades with non-homogeneous cross sections, composed of anisotropic material, require highly sophisticated structural analysis because of various cross sectional geometry and material properties. They may be subjected by the combined axial, bending, and torsional loading, and the dynamic and static behaviors of rotor blades are seriously influenced by the structural coupling under rotating condition. To simplify the analysis procedure using one dimensional beam model, it is necessary to determine the principal coordinate of the rotor blade. In this study, a method for the determination of the principal coordinate including elastic and shear centers is presented, based upon continuum mechanics. The scheme is verified by comparing the results with confirmed experimental results.

  • PDF