References
- Ahmadian, M.T. and Zangench, M.S. (2002), 'Vibration analysis of orthotropic rectangular plates using superelements', Comput. Meth. Appl. Mech. Eng., 191(19-20), 2097-2103 https://doi.org/10.1016/S0045-7825(01)00370-X
- Al-Qaisia, A.A. and Al-Bedoor, B.O. (2005), 'Evaluation of different methods for the consideration of the effect of rotation on the stiffening of rotating beams', J. Sound Vib., 280(3-5), 531-553 https://doi.org/10.1016/j.jsv.2003.12.049
- Al-Sadder, S.Z., Othman, R.A. and Shatnawi, A.S. (2006), 'A simple finite element formulation for large deflection analysis of nonprismatic slender beams', Struct. Eng. Mech., 24(6), 647-664 https://doi.org/10.12989/sem.2006.24.6.647
- Banerjee, J.R. (2000), 'Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method', J. Sound Vib., 233(5), 857-875 https://doi.org/10.1006/jsvi.1999.2855
- Banerjee, J.R. Su, H. and Jackson, D.R. (2006), 'Free vibration of rotating tapered beams using dynamic stiffness method', J. Sound Vib., 298, 1034-1054 https://doi.org/10.1016/j.jsv.2006.06.040
- Belyi, M.V. (1993), 'Superelement method for transient dynamic analysis of structural systems', Int. J. Numer. Method. Eng., 36(13), 2263-2286 https://doi.org/10.1002/nme.1620361308
- Cai, G.P., Hong, J.Z. and Yang, S.X. (2004), 'Model study and active control of a rotating flexible cantilever beam', Int. J. Mech. Sci., 46(6), 871-889 https://doi.org/10.1016/j.ijmecsci.2004.06.001
- Cardona, A. (2000), 'Superelements modelling in flexible multibody dynamics', Multibody Syst. Dyn., 4(2-3), 245-266 https://doi.org/10.1023/A:1009875930232
- Chandiramani, N.K., Librescu, L. and Shete, C.D. (2002), 'On the free-vibration of rotating composite beams using a higher-order shear formulation', Aerospace Sci. Tech., 6(8), 545-561 https://doi.org/10.1016/S1270-9638(02)01195-1
- Datta, P.K. and Ganguli, R. (1990), 'Vibration characteristics of a rotating blade with localized damage including the effects of shear deformation and rotary inertia', Comput. Struct., 36(6), 1129-1133 https://doi.org/10.1016/0045-7949(90)90221-M
- Fan, J.P., Tang, C.Y. and Chow, C.L. (2004), 'A multilevel superelement technique for damage analysis', Int. J. Damage Mech., 13(2), 187-199 https://doi.org/10.1177/1056789504041059
- Fung, E.H.K., Zou, J.Q. and Lee, H.W.J. (2004), 'Lagrangian formulation of rotating beam with active constrained layer damping in time domain analysis', J. Mech. Des., 126(2), 359-364 https://doi.org/10.1115/1.1649969
- Furta, S.D. (2003), 'Linear vibrations of a rotating elastic beam with an attached point mass', J. Eng. Math., 46(2), 165-188 https://doi.org/10.1023/A:1023985702887
- Ganguli, R. (2001) 'A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data', J. Intelligent Mater. Syst. Struct., 12(6), 397-407 https://doi.org/10.1106/104538902022598
- Ganguli, R., Chopra, I. and Weller, W.H. (1998), 'Comparison of calculated vibratory rotor hub loads with experimental data', J. Am. Helicopter Soc., 43(4), 312-318 https://doi.org/10.4050/JAHS.43.312
- Hodges, D.J. and Rutkowsky, M.J. (1981), 'Free vibration analysis of rotating beams by a variable order finite element method', AIAA J., 19(11), 1459-1466 https://doi.org/10.2514/3.60082
- Hosseini, S.A.A. and Khadem, S.E. (2005), 'Free vibration analysis of rotating beams with random properties', Struct. Eng. Mech., 20(3), 293-312 https://doi.org/10.12989/sem.2005.20.3.293
- Houmat, A (2001), 'A sector Fourier-p element for free vibration analysis of sectorial membranes', Comput. Struct., 79(12), 1147-1152 https://doi.org/10.1016/S0045-7949(01)00013-X
- Houmat, A. (2001), 'A sector Fourier p-element applied to free vibration analysis of sectorial plates', J. Sound Vib., 243(2), 269-282 https://doi.org/10.1006/jsvi.2000.3410
- Hu, K., Vlahopoulos, N. and Mourelatos, Z.P. (2002), 'A finite element formulation for coupling rigid and flexible body dynamics of rotating beams', J. Sound Vib., 255(3), 603-630 https://doi.org/10.1006/jsvi.2002.5196
- Jiang, J. and Olson, M.D. (1993), 'A super element model for nonlinear-analysis of stiffened box structures', Int. J. Numer. Method. Eng., 36(13), 2203-2217 https://doi.org/10.1002/nme.1620361305
- Khulief, Y.A. (2001), 'Vibration suppression in rotating beams using active modal control', J. Sound Vib., 242(2), 681-699 https://doi.org/10.1006/jsvi.2000.3385
- Koko, T.S. (1992), 'Vibration analysis of stiffened plates by super elements', J. Sound Vib., 158(1), 149-167 https://doi.org/10.1016/0022-460X(92)90670-S
- Kumar, S., Roy, N. and Ganguli, R. (2007), 'Monitoring low cycle fatigue damage in turbine blade using vibration characteristics', Mech. Syst. Signal Processing, 21(1), 480-501 https://doi.org/10.1016/j.ymssp.2005.02.011
- Lee, S.Y., Lin, S.M. and Wu, C.T. (2004), 'Free vibration of a rotating nonuniform beam with arbitrary pretwist, an elastically restrained root and a tip mass', J. Sound Vib., 273(3), 477-492 https://doi.org/10.1016/S0022-460X(03)00506-6
- Leung, A.Y.T. and Chan, J.K.W. (1998),'Fourier p-element for the analysis of beams and plates', J. Sound Vib., 212(1), 179-185 https://doi.org/10.1006/jsvi.1997.1423
- Leung, A.Y.T. and Zhu, B. (2004), 'Fourier p-elements for curved beam vibrations', Thin Wall. Struct., 42, 39-57 https://doi.org/10.1016/S0263-8231(03)00122-8
- Lin, H.Y. and Tsai, Y.C. (2005), 'On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses', Struct. Eng. Mech., 21(3), 351-367 https://doi.org/10.12989/sem.2005.21.3.351
- Lin, H.Y and Tsai, Y.C. (2006), 'On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias', Struct. Eng. Mech., 22(6), 701-717 https://doi.org/10.12989/sem.2006.22.6.701
- Lin, S.M., Lee, S.Y. and Wang, W.R. (2004), 'Dynamic analysis of rotating damped beams with an elastically restrained root', Int. J. Mech. Sci., 46(5), 673-693 https://doi.org/10.1016/j.ijmecsci.2004.05.011
- Munteanu, M.G., Ray, P. and Gogu, G. (2004), 'Study of the natural frequencies for two and three-dimensional curved beams under rotational movement', Proc. of the Institution of Mechanical Engineers Part K-Journal of Multi Body Dynamics, 218(1), 9-18
- Nurse, A.D. (2001), 'New superelements for singular derivative problems of arbitrary order', Int. J. Numer. Method. Eng., 50(1), 135-146 https://doi.org/10.1002/1097-0207(20010110)50:1<135::AID-NME25>3.0.CO;2-7
- Pawar, P.M. and Ganguli, R. (2005), 'Modeling multi-layer matrix cracking in thin walled composite rotor blades', J. Am. Helicopter Soc., 50(4), 354-366 https://doi.org/10.4050/1.3092872
- Pawar, P.M. and Ganguli, R. (2006), 'Modeling progressive damage accumulation in thin walled composite beams for rotor blade applications', Compos. Sci. Tech., 66(13), 2337-2349 https://doi.org/10.1016/j.compscitech.2005.11.033
- Qu, Z.P. and Selvam, R.P. (2000), 'Dynamic superelement modeling method for compound dynamic systems', AIAA J., 38(6), 1078-1083 https://doi.org/10.2514/2.1070
- Thakkar, D. and Ganguli, R. (2004), 'Dynamic response of rotating beams with piezoceramic actuation', J. Sound Vib., 270(4-5), 729-753 https://doi.org/10.1016/S0022-460X(03)00189-5
- Thakkar, D. and Ganguli, R. (2006), 'Use of single crystal and soft piezoceramics for alleviation of flow separation induced vibration in a smart helicopter rotor', Smart Mater. Struct., 15(2), 331-341 https://doi.org/10.1088/0964-1726/15/2/013
- Tkachev, V.V. (2000), 'The use of superelement approach for the mathematical simulation of reactor structure dynamic behaviour', Nucl. Eng. Des., 196(1), 101-104 https://doi.org/10.1016/S0029-5493(99)00230-7
- Tufekci, E. and Arpaci, A. (2006), 'Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations', Struct. Eng. Mech., 22(2), 131-150 https://doi.org/10.12989/sem.2006.22.2.131
- Vaziri, R. (1996), 'Impact analysis of laminated composite plates and shells by super finite elements', Int. J. Impact Eng., 18(7-8), 765-782 https://doi.org/10.1016/S0734-743X(96)00030-9
- Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2006), 'Wave propogation characteristics of rotating uniform Euler-Bernoulli beams', CMES-Comput. Model. Eng. Sci., 16(3), 197-208
- Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), 'Free vibration and wave propogation analysis of uniform and tapered rotating beams using spectrally formulated finite elements', Int. J. Solids Struct., 44(18-19), 5875-5893 https://doi.org/10.1016/j.ijsolstr.2007.02.002
- Wang, G and Wereley, N.M. (2004), 'Free vibration analysis of rotating blades with uniform tapers', AIAA J., 42(12), 2429-2437 https://doi.org/10.2514/1.4302
- West, L.J., Bardell, N.S., Dunsdon, J.M. and Loasby, P.M. (1997), 'Some limitations associated with the use of K -orthogonal polynomials in hierarchial versions of the finite element method', The Sixth Int. Conf. on Recent Advances in Structural Dynamics, Southhampton, UK., 217-227
- Wright, A.D., Smith, C.E., Thresher, R.W. and Wang, J.L.C. (1982), 'Vibration modes of centrifugally stiffened beams', J. Appl. Mech., 49(2), 197-202 https://doi.org/10.1115/1.3161966
- Yang, J.B., Jiang, L.J. and Chen, D.C.H. (2004), 'Dynamic modelling and control of a rotating Euler-Bernouli beam', J. Sound Vib., 274(3-5), 863-875 https://doi.org/10.1016/S0022-460X(03)00611-4
- Yongqiang, L. (2006), 'Free vibration analysis of plate using finite strip Fourier p-element', J. Sound Vib., 294(4-5), 1051-1059 https://doi.org/10.1016/j.jsv.2006.01.003
- Yoo, H.H., Seo, S. and Huh, K (2002), 'The effect of a concentrated mass on the modal characteristics of a rotating cantilever beam', Proc. of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 216(2), 151-163
- Zhao, J. and Dewolf, J.T. (2007), 'Modeling and damage detection for cracked I-shaped steel beams', Struct. Eng. Mech., 25(2), 131-146 https://doi.org/10.12989/sem.2007.25.2.131
- Zivkovic, M., Kojic, M. Slavkovic, R. et al. (2001), 'A general beam finite element with deformable cross-section', Comput. Meth. Appl. Mech. Eng., 190(20-21), 2651-2680 https://doi.org/10.1016/S0045-7825(00)00259-0
Cited by
- Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution vol.46, pp.6, 2011, https://doi.org/10.1007/s11012-010-9383-z
- Basic Displacement Functions in Analysis of Centrifugally Stiffened Tapered Beams vol.36, pp.5, 2011, https://doi.org/10.1007/s13369-011-0071-7
- Derivation of an efficient element for free vibration analysis of rotating tapered Timoshenko beams using basic displacement functions vol.226, pp.11, 2012, https://doi.org/10.1177/0954410011422479
- Stiff string approximations in Rayleigh–Ritz method for rotating beams vol.219, pp.17, 2013, https://doi.org/10.1016/j.amc.2013.03.017
- Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition vol.48, pp.7, 2013, https://doi.org/10.1007/s11012-013-9695-x
- Hybrid stiff-string–polynomial basis functions for vibration analysis of high speed rotating beams vol.87, pp.3-4, 2009, https://doi.org/10.1016/j.compstruc.2008.09.008
- Modal tailoring and closed-form solutions for rotating non-uniform Euler–Bernoulli beams vol.88, 2014, https://doi.org/10.1016/j.ijmecsci.2014.08.003
- The coupled vibration in a rotating multi-disk rotor system vol.53, pp.1, 2011, https://doi.org/10.1016/j.ijmecsci.2010.10.001
- Benchmark analytical solutions from beams with shared eigenpair vol.106, 2016, https://doi.org/10.1016/j.ijmecsci.2015.12.017
- Vibration analysis of a cracked rotating tapered beam using the p-version finite element method vol.47, pp.7, 2011, https://doi.org/10.1016/j.finel.2011.02.013
- Free Vibration Analysis of Centrifugally Stiffened Tapered Functionally Graded Beams vol.20, pp.5, 2013, https://doi.org/10.1080/15376494.2011.627634
- Violin string shape functions for finite element analysis of rotating Timoshenko beams vol.47, pp.9, 2011, https://doi.org/10.1016/j.finel.2011.04.002
- Integrated aeroelastic and control analysis of wind turbine blades equipped with microtabs vol.75, 2015, https://doi.org/10.1016/j.renene.2014.09.032
- Effect of cracks on nonlinear flexural vibration of rotating Timoshenko functionally graded material beam having large amplitude motion 2017, https://doi.org/10.1177/0954406217694213
- Rotorcraft research in India: recent developments vol.82, pp.5, 2010, https://doi.org/10.1108/00022661011092956
- Tailoring the second mode of Euler-Bernoulli beams: an analytical approach vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.773
- Analysis of weak solution of Euler–Bernoulli beam with axial force vol.298, 2017, https://doi.org/10.1016/j.amc.2016.11.019
- Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method vol.59, pp.1, 2016, https://doi.org/10.12989/sem.2016.59.1.001
- Dynamic characterization of thickness tapered laminated composite plates vol.22, pp.16, 2016, https://doi.org/10.1177/1077546314564588
- Vibration analysis of rotating 3D beams by the p-version finite element method vol.65, 2013, https://doi.org/10.1016/j.finel.2012.10.008
- Rotating Beams and Nonrotating Beams With Shared Eigenpair vol.76, pp.5, 2009, https://doi.org/10.1115/1.3112741
- Basic displacement functions for centrifugally stiffened tapered beams 2010, https://doi.org/10.1002/cnm.1365
- Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials vol.89, pp.11-12, 2011, https://doi.org/10.1016/j.compstruc.2010.10.012
- Closed-form solutions and uncertainty quantification for gravity-loaded beams vol.51, pp.6, 2016, https://doi.org/10.1007/s11012-015-0314-x
- A Collocation Approach for Finite Element Basis Functions for Euler-Bernoulli Beams Undergoing Rotation and Transverse Bending Vibration vol.13, pp.4, 2012, https://doi.org/10.1080/15502287.2012.682194
- Free Vibration of a Functionally Graded Rotating Timoshenko Beam Using FEM vol.16, pp.2, 2013, https://doi.org/10.1260/1369-4332.16.2.405
- Random Eigenvalue Characterization for Free Vibration of Axially Loaded Euler–Bernoulli Beams vol.56, pp.9, 2018, https://doi.org/10.2514/1.J056942
- Effect of Taper on Free Vibration of Functionally Graded Rotating Beam by Mori-Tanaka Method pp.2250-0553, 2018, https://doi.org/10.1007/s40032-018-0477-z
- Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method vol.34, pp.2, 2007, https://doi.org/10.12989/sem.2010.34.2.231
- Physics based basis function for vibration analysis of high speed rotating beams vol.39, pp.1, 2007, https://doi.org/10.12989/sem.2011.39.1.021
- On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass vol.45, pp.1, 2013, https://doi.org/10.12989/sem.2013.45.1.069
- Automated static condensation method for local analysis of large finite element models vol.61, pp.6, 2007, https://doi.org/10.12989/sem.2017.61.6.807
- Dynamic response and stability of a spinning turbine blade subjected to pitching and yawing vol.7, pp.4, 2019, https://doi.org/10.1007/s40435-019-00555-4
- Natural frequencies of a rotating curved cantilever beam: A perturbation method-based approach vol.234, pp.9, 2007, https://doi.org/10.1177/0954406219899117
- Minimum Diameter of Optimally Located Damping Wire to Maximize the Fundamental Frequencies of Rotating Blade Using Timoshenko Beam Theory vol.21, pp.7, 2021, https://doi.org/10.1142/s0219455421500905