References
- AbdaIla, J.A. and Ibrahim, A.M. (2006), 'Development of a discrete reissner-mindlin element on winkler foundation', Finite Elem. Anal. Des., 42, 740-748 https://doi.org/10.1016/j.finel.2005.11.004
- AI-Khaiat, H. and West, H.H. (1990), 'Analysis of plates on an elastic foundation by the initial value method', Mech. Struct. Mach., 18(1), 1-15 https://doi.org/10.1080/08905459008915656
- Bathe, K.J. (1996), Finite Element Procedures, Upper Saddle River, NJ: Prentice-HaIl
- Buczkowski, R. and Torbacki, W. (2001), 'Finite element modeling of thick plates on two-parameter elastic foundation', Int. J Numer. Anal. Met. Geom., 25, 1409-1427 https://doi.org/10.1002/nag.187
- Chucheepsakul, S. and Chinnaboon, B. (2002), 'An alternative domain/boundary element technique for analyzing plates on two-parameter elastic foundations', Eng. Anal. Bound. Elem., 26, 547-555 https://doi.org/10.1016/S0955-7997(02)00007-3
-
Daloglu, A.T. and VaIlabhan, C.V.G. (2000), 'Values of
$\kappa$ for slab on winkler foundation', J. Geotech. Geoenviron., 126(5), 463-471 https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(463) - Eratli, N. and Akoz, A.Y. (1997), 'The mixed finite element formulation for the thick plates on elastic foundations', Compul. Struct., 65(4), 515-529 https://doi.org/10.1016/S0045-7949(96)00403-8
- Hetenyi, M. (1950), 'A general solution for the bending of beams on an elastic foundation of arbitrary continuity', J. Appl. Phys., 21, 55-58 https://doi.org/10.1063/1.1699420
- Liu, F.-L. (2000), 'Rectangular thick plates on winkler foundation: Differential quadrature element solution', Int. J. Solids Struct., 37, 1743-1763 https://doi.org/10.1016/S0020-7683(98)00306-0
- Mishra, R.C. and Chakrabarti, S.K. (1997), 'Shear and attachment effects on the behaviour of rectangular plates resting on tensionless elastic foundation', Eng. Struct., 19(7), 551-567 https://doi.org/10.1016/S0141-0296(97)00122-3
- Rashed, Y.F., Aliabadi, M.H. and Brebbia, C.A.(1998), 'The boundary element method for thick plates on a winkler foundation', Int. J. Numer. Meth. Eng., 41, 1435-1462 https://doi.org/10.1002/(SICI)1097-0207(19980430)41:8<1435::AID-NME345>3.0.CO;2-O
- Sadecka, L. (2000), 'A finite/infinite element analysis of thick plate on a layered foundation', Comput. Struct., 76, 603-610 https://doi.org/10.1016/S0045-7949(99)00180-7
- Selvaduari, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction, Elsevier Scientific Publishing Company, Amsterdam
- Teo, T.M. and Liew, K.M. (2002), 'Differential cubature method for analysis of shear deformable rectangular plates on pasternak foundations', Int. J. Mech. Sci., 44, 1179-1194 https://doi.org/10.1016/S0020-7403(02)00034-6
- Timoshenko, S.P. and Krieger, W. (1970), Theory ofPlates and Shells, McGraw-Hill
- Turhan, A. (1992), A Consistent Vlasov Model for Analysis of Plates on Elastic Foundations Using the Finite Element Method, Ph. D. Thesis, The Graduate School of Texas Tech. University. Lubbock, Texas
- Voyiadjis, G.Z. and Kattan, P.I. (1986), 'Thick rectangular plates on an elastic foundation', J. Eng. Mech., 112(11), 1218-1240 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1218)
- Wang, Y.H., Tham, L.G., Tsui, Y. and Yue, Z.Q. (2003), 'Plate on layered foundation analyzed by a semianalytical and semi-numerical method', Comput. Struct., 30, 409-418
- Weaver, W. and Johnston, P.R. (1984), Finite Elements for Structural Analysis, Englewood Cliffs, NJ: PrenticeHall, Inc
- Yettram, A.L. and Whiteman, J.R. (1984), 'Effect of Thickness on The Behaviour of Plates on Foundation', Comput. Struct., 19(4), 501-509 https://doi.org/10.1016/0045-7949(84)90096-8
- Celik, M. and Omurtag, M.H. (2005), 'Determination of the vlasov foundation parameters-quadratic variation of elasticity modulus-using FE analysis', Struct. Eng. Mech., 19(6), 619-637 https://doi.org/10.12989/sem.2005.19.6.619
- Celik, M. and Saygun, A. (1999), 'A method for the analysis of plates on a two-parameter foundation', Int. J. Solids Struct., 36, 2891-2915 https://doi.org/10.1016/S0020-7683(98)00135-8
Cited by
- Finite Element Analysis of Plate on Layered Tensionless Foundation vol.56, pp.3, 2010, https://doi.org/10.2478/v.10169-010-0014-9
- Development of a higher order finite element on a Winkler foundation vol.48, pp.1, 2012, https://doi.org/10.1016/j.finel.2011.08.010
- A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment vol.111, 2014, https://doi.org/10.1016/j.compstruct.2013.12.033
- A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation vol.73, 2013, https://doi.org/10.1016/j.ijmecsci.2013.03.017
- An Integrated Kirchhoff Element by Galerkin Method for Free Vibration Analysis of Plates on Elastic Foundation vol.24, 2016, https://doi.org/10.1016/j.protcy.2016.05.021
- Analysis of flexible raft resting on soft soil improved by granular piles considering soil shear interaction vol.94, 2018, https://doi.org/10.1016/j.compgeo.2017.09.007
- A simplified first-order shear deformation theory for bending, buckling and free vibration analyses of isotropic plates on elastic foundations 2017, https://doi.org/10.1007/s12205-017-1517-6
- Problems with a popular thick plate element and the development of an improved thick plate element vol.29, pp.3, 2007, https://doi.org/10.12989/sem.2008.29.3.327
- New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method vol.33, pp.4, 2007, https://doi.org/10.12989/sem.2009.33.4.485
- New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method vol.36, pp.5, 2007, https://doi.org/10.12989/sem.2010.36.5.625
- New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM vol.41, pp.2, 2007, https://doi.org/10.12989/sem.2012.41.2.205
- Bending response of FG plates resting on elastic foundations in hygrothermal environment with porosities vol.213, pp.None, 2007, https://doi.org/10.1016/j.compstruct.2019.01.065
- Free Vibration and Static Bending Analysis of Piezoelectric Functionally Graded Material Plates Resting on One Area of Two-Parameter Elastic Foundation vol.2020, pp.None, 2007, https://doi.org/10.1155/2020/9236538