References
- Ashour, S.A. and Hanson, R.D. (1987), 'Elastic seismic response of buildings with supplemental damping', Report No. UMCE 87-1, University of Michigan, Ann Arbor, MI
- Constantinou, M.C. and Symans, M.D. (1993a), 'Experimental study of seismic response of structures with supplemental fluid dampers', The Structural Design of Tall Buildings, 2, 93-132 https://doi.org/10.1002/tal.4320020203
- Constantinou, M.C. and Symans, M.D. (1993b), 'Experimental and analytical investigation of seismic response of structures with supplemental fluid dampers', Report No. NCEER 92-0032, National Center for Earthquake Engineering Research, University of New York at Buffalo, Buffalo, NY
- Crosby, P., Kelly, J.M. and Singh, J. (1994), 'Utilizing viscoelastic dampers in the seismic retrofit of a thirteen story steel frame building', Structures Congress XII, Atlanta, GA, 1286-1291
- De Silva, C.W. (1981), 'An algorithm for the optimal design of passive vibration controllers for flexible systems', J. Sound Vib., 75(4), 495-502 https://doi.org/10.1016/0022-460X(81)90437-5
- Eurocode 8 (EC8), (2003), Design Provisions for Earthquake Resistance of Structures, CEN
- FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC
- FEMA 450 (2004), NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Federal Emergency Management Agency, Washington, DC
- Gluck, N., Reinhom, A.M., Gluck, J. and Levy, R. (1996), 'Design of supplemental dampers for control of structures', J. Struct. Eng., 122(12), 1394-1399 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1394)
- Gtirgoze, M. and Muller, P.C. (1992), 'Optimal positioning of dampers in multi-body systems', J. Sound Vib., 158(3), 517-530 https://doi.org/10.1016/0022-460X(92)90422-T
- Housner, G.W. et al. (1997), 'Structural control: Past, present, and future', J. Eng. Mech., 123(9), 897-971 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Ikeda, Y. (2004), 'Active and semiactive control of buildings in Japan', J. of Japan Association for Earthq. Eng. 43 (Special Issue)
- Jennings, P.C. (1964), 'Periodic response of a general yielding structure', J. Eng. Mech., Div; ASCE, 90(2), 131-166
- Lutes, L. D. and Sarkani, S. (2001), Random Vibrations, Butterworth-Heinemann, Oxford (UK)
- Nigam, N.C. (1972), Structural Optimization in Random Vibration Environment, AIAA, 551-553
- Reinhorn, A.M., Li, C. and Constantinou, M.C. (1995a), 'Experimental and analytical investigation of seismic retrofit of structures with supplemental damping: Part 1 - Fluid viscous damping devices', Report No. NCEER 95-0001, National Center for Earthquake Engineering Research, University of New York at Buffalo, Buffalo, NY
- Reinhom, A.M. and Li, C. (1995b), 'Experimental and analytical investigation of seismic retrofit of structures with supplement damping, Part III: Viscous damping wall', Technical Report NCEER-95-0013, NCEER, Buffalo, NY
- Shen, K.L. and Soong, T.T. (1995), 'Modelling of viscoelastic dampers for structural applications', J. Eng. Mech., ASCE, 121, 694-701 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:6(694)
- Shukla, A.K. and Datta, T.K. (1999), 'Optimal use of viscoelastic dampers in building frames for seismic force', J. Struct. Eng., 125(4), 401-409 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(401)
- Soong, T.T. and Grigoriu, M. (1993), Random Vibration in Mechanical and Structural Systems, Prentice-Hall, Englewood Cliffs, N.J.
- Soong, T.T. and Costantinou, M.C. (1994), Passive and Active Structural Vibration Control in Civil Engineering, Springer-Verlag Wien, New York
- Zhang, R.H. and Soong, T.T. (1992), 'Seismic design of viscoelastic dampers for structural applications', J. Struct. Eng., 118(5), 1375-1392 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375)
Cited by
- Damage-Based Inelastic Seismic Spectra vol.17, pp.10, 2017, https://doi.org/10.1142/S0219455417501152
- PERFORMANCE RELIABILITY BASED OPTIMIZATION CRITERION FOR ELASTIC STRUCTURES SUBJECT TO RANDOM LOADS vol.15, pp.04, 2008, https://doi.org/10.1142/S0218539308003106
- Optimum design of viscous dissipative links in wall-frame systems vol.25, pp.9, 2016, https://doi.org/10.1002/tal.1265
- Structural optimization of hollow-section steel trusses by differential evolution algorithm vol.16, pp.2, 2016, https://doi.org/10.1007/s13296-016-6013-1
- Multi-objective optimization of a dissipative connection for seismic protection of wall-frame structures vol.87, 2016, https://doi.org/10.1016/j.soildyn.2016.01.020
- A comparative study on parameter identification of fluid viscous dampers with different models vol.84, pp.8, 2014, https://doi.org/10.1007/s00419-014-0869-3
- Optimum placement and characteristics of velocity-dependent dampers under seismic excitation vol.11, pp.3, 2012, https://doi.org/10.1007/s11803-012-0130-4
- Effects of Excitation Bandwidth on Damping Reduction Factor pp.1559-808X, 2018, https://doi.org/10.1080/13632469.2018.1528910
- Nonstationary First Threshold Crossing Reliability for Linear System Excited by Modulated Gaussian Process vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/3685091
- Parameter identification of degrading and pinched hysteretic systems using a modified Bouc–Wen model pp.1744-8980, 2018, https://doi.org/10.1080/15732479.2018.1469652
- An Alternative Formulation for Optimum TMD Parameters Based on Equal Eigen Value Criteria pp.1559-808X, 2019, https://doi.org/10.1080/13632469.2018.1559263
- The effects of construction practices on the seismic performance of RC frames with masonry infills vol.28, pp.1, 2007, https://doi.org/10.12989/sem.2008.28.1.069
- Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses vol.37, pp.4, 2007, https://doi.org/10.12989/sem.2011.37.4.385
- Proposal of a Incremental Modal Pushover Analysis (IMPA) vol.13, pp.6, 2007, https://doi.org/10.12989/eas.2017.13.6.539
- Damage Index-Based Lower Bound Structural Design vol.4, pp.None, 2007, https://doi.org/10.3389/fbuil.2018.00032
- A Heuristic Approach to Identify the Steel Grid Direction of R/C Slabs Using the Yield-Line Method for Analysis vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6017146