References
- J. Bang-Jensen and G. Gutin, Digraphs, Theory, algorithms and applications. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2001
- Y. Guo, Semi complete Multipartite Digraphs: A Generalization of Tournaments, Habilitation thesis, RWTH Aachen (1998), 102 pp
- G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems, and algorithms: a survey, J. Graph Theory 19 (1995), no. 4, 481-505 https://doi.org/10.1002/jgt.3190190405
- G. Gutin, Note on the path covering number of a semicomplete multipartite digraph, J. Combin. Math. Combin. Comput. 32 (2000), 231-237
- J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297-301 https://doi.org/10.4153/CMB-1966-038-7
- O. Ore, Theory of gmphs, American Mathematical Society Colloquium Publications, Vol. 38, American Mathematical Society, 1962
- J. Stella, L. Volkmann, and S. Winzen, How close to regular must a multipartite tournament be to secure a given path covering number?, Ars Combinatoria, to appea
- P. Turan, Eine Extremalaufgabe aus der Gmphentheorie, Mat. Fiz. Lapok 48 (1941), 436-452
- L. Volkmann, F'undamente der Gmphentheorie, Springer Lehrbuch Mathematik, Springer-Verlag, Vienna, 1996
- L. Volkmann, Strong subtournaments of multipartite tournaments, Australas. J. Combin. 20 (1999), 189-196
- L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math. 245 (2002), no. 1-3, 19-53 https://doi.org/10.1016/S0012-365X(01)00419-8
- L. Volkmann and S. Winzen, Cycles with a given number of vertices from each partite set in regular multipartite tournaments, Czechoslovak Math. J. 56 (131) (2006), no. 3, 827-843 https://doi.org/10.1007/s10587-006-0059-8
- L. Volkmann and S. Winzen, On the connectivity of close to regular multipartite tournaments, Discrete Appl. Math. 154 (2006), no. 9, 1437-1452 https://doi.org/10.1016/j.dam.2004.09.022
-
L. Volkmann and S. Winzen, Almost regular c-partite tournaments contain a strong subtournaments of order c when c
${ge}$ 5, Discrete Math., to appear - S. Winzen, Close to Regular Multipartite Tournaments, Ph. D. thesis, RWTH Aachen, 2004
- A. Yeo, One-diregular subgmphs in semicomplete multipartite digmphs, J. Graph Theory 24 (1997), no. 2, 175-185 https://doi.org/10.1002/(SICI)1097-0118(199702)24:2<175::AID-JGT5>3.0.CO;2-N
- A. Yeo, Semicomplete Multipartite Digmphs, Ph. D. thesis, Odense University, 1998
- A. Yeo, How close to regular must a semicomplete multipartite digmph be to secure Hamiltonicity?, Graphs Combin. 15 (1999), no. 4, 481-493 https://doi.org/10.1007/s003730050080
Cited by
- Multipartite tournaments: A survey vol.307, pp.24, 2007, https://doi.org/10.1016/j.disc.2007.03.053