수소 제조 촉매 개발을 위한 조합 촉매 기법의 활용

Application of Combinatorial Catalysis Techniques for Hydrogen Generation Catalysts

  • 서동진 (한국과학기술연구원 청정에너지연구센터) ;
  • Suh, Dong-Jin (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Wolf, Eduardo E. (Department of Chemical Engineering, University of Notre Dame)
  • 발행 : 2007.09.15

초록

조합 및 고속탐색 실험 기법을 촉매 성분의 선정에 활용하였다. 소형 연료전지 작동을 위한 수소 생산에 가장 적합한 것으로 알려진 메탄을 산화 분해용 촉매의 특성을 적외선 화상 및 병렬형 반응 시스템으로 조사하였다. 반응의 모델을 먼저 제시하고 이를 근거로 Cu-Zn-Pd계 촉매를 선정하였다. 먼저 적외선 화상을 이용한 스크리닝을 위해서는 발열 효과라는 촉매 활성의 간접적인 현상을 보여줄 수 있는 적외선 민감 카메라를 이용하여 한 번에 50개의 시료 측정이 가능한 촉매 시료 배열을 설계하였다. 적외선 화상 결과로 높은 활성을 보이는 촉매 시료를 선정한 다음, 병렬형 반응 시스템과 단일 흐름 고정층 반응 시스템으로 선정된 촉매의 활성 특성을 조사 확인하였다. 본 연구에서 제시한 것과 같은 접근 방법으로 지속적으로 얻어진 결과를 반영하여 최적의 활성을 보이는 촉매 성분을 단기간에 찾아내고자 한다.

키워드

참고문헌

  1. E. M. Gordon and J. F. Kerwin, 'Combinatorial Chemistry and Molecular Diversity in Drug Discovery', Wiley, New York, 1998
  2. N. K. Terret, 'Combinatorial Chemistry', Oxford University, Oxford, 1998
  3. S. R. Wilson and A. W. Czamik, 'Combinatorial Chemistry', Wiley, New York, 1997
  4. X. -D. Xiang, X. Sun, G. Briceno, Y. Lou, K. -A. Wang, and H. Chang, 'Combinatorial Approach to Materials Discovery' , Science, Vol. 268, 1995, pp. 1738-1740 https://doi.org/10.1126/science.268.5218.1738
  5. G. Briceno, H. Chang, X . Sun, P. G. Schultz, and X. -D. Xiang, 'Class of Cobalt Oxide Magnetoresistance Materials Discovered with Combinatorial Synthesis', Science, Vol. 270, 1995, pp. 273-275 https://doi.org/10.1126/science.270.5234.273
  6. E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, 'Combinatorial Approach to the Discovery and Optimization of Luminescent Materials', Nature, Vol. 389, 1997, pp. 944-948 https://doi.org/10.1038/40099
  7. E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, 'A Rare-Earth Phosphor Containing One-Dimensional Chains Identified through Combinatorial Methods', Science, Vol. 279, 1998, pp. 837-839 https://doi.org/10.1126/science.279.5352.837
  8. B. Jandeleit and D. J. Schaefer, T. S. Powers, H. W. Turner, and W. H. Weinberg, 'Combinatorial Materials Science and Catalysis', Angew. Chem. Int. Ed., Vol. 38, 1999, pp. 2494.-2532 https://doi.org/10.1002/(SICI)1521-3773(19990903)38:17<2494::AID-ANIE2494>3.0.CO;2-#
  9. P. P. Pescarmona, J. C. van der Waal, I. E. Maxwell, and T. Mascmeyer, 'Combinatorial Chemistry, High-Speed Screening and Catalysis', Catal. Lett., Vol. 63, 1999, pp. 1-11 https://doi.org/10.1023/A:1019000601210
  10. D. Wolf, O. V. Buyesvskaya, and M. Baems, 'An Evolutionary Approach in the Combinatorial Selection and Optimization of Catalytic Materials', Appl. Catal. A: Gen., Vol. 200, 2000, pp. 63-77 https://doi.org/10.1016/S0926-860X(00)00643-8
  11. S. M. Senkan, 'High-Throughput Screening of Solid-State Catalyst Libraries', Nature, Vol. 394, 1998, pp. 350-353 https://doi.org/10.1038/28575
  12. C. Hoffinann, A. Wolf, and F. Schuth, 'Parallel Synthesis and Testing of Catalysts under Nearly Conventional Testing Conditions', Angew. Chem. Int. Ed., Vol. 38, 1999, pp. 2800-2803 https://doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2800::AID-ANIE2800>3.0.CO;2-9
  13. C. M. Snively, G. Oskarsdottir, and J. Lauterbach, 'Parallel Analysis of the Reaction Products from Combinatorial Catalyst Libraries', Angew. Chem. Int. Ed., Vol. 40, 2001, pp. 3028-3030 https://doi.org/10.1002/1521-3773(20010817)40:16<3028::AID-ANIE3028>3.0.CO;2-X
  14. W. Maier, 'Combinatorial Chemistry Challenge and Chance for the Development of New Catalysts and Materials', Angew. Chem. Int. Ed., Vol. 38, 1999, pp. 1216-1218 https://doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1216::AID-ANIE1216>3.0.CO;2-V
  15. J. M. Serra, A. Chica, and A. Corma, 'Development of a Low Temperature Light Paraffin Isomerization Catalysts with Improved Resistance to Water and Sulphur by Combinatorial Methods', Appl. Catal. A: Gen., Vol. 239, 2003, pp. 35-42 https://doi.org/10.1016/S0926-860X(02)00371-X
  16. R. Schlogl, 'Combinatorial Chemistry in Heterogeneous Catalysis: A New Scientific Approach or 'the King's New Clothes', Angew. Chem. Int. Ed., Vol. 37, 1998, pp. 2333-2336 https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2333::AID-ANIE2333>3.0.CO;2-J
  17. R. J. Berger, J. Perez-Ramirez, F. Kapteijn, and J. A. Moulijn, 'Catalyst Performance Testing: Radial and Axial Dispersion Related to Dilution in Fixed-Bed Laboratory Reactors', Appl. Catal. A: Gen., Vol. 227, 2002, pp. 321-333 https://doi.org/10.1016/S0926-860X(01)00950-4
  18. J. Holmgren, D. Bem, M. Bricker, R.. Gillespie, G. Lewis, D. Akporiaye, I. Dahl, A. Karlsson, M. Plassen, and R. Wendelbo, 'Application of Combinatorial Tools to the Discovery and Commercialization of Microporous Solids: Facts and Fiction', Stud. Surf. Sci. Catal., Vol. 135, 2001, pp. 113-122 https://doi.org/10.1016/S0167-2991(01)81191-5
  19. P. C. Pawlicki and R. A. Schmitz, 'Spatial Effects on Supported Catalysts', Chem. Eng. Prog., Vol. 83, 1987, pp. 40-45
  20. J. Kellow and E. E. Wolf, 'Infrared Thermography and FTIR Studies of Catalyst Preparation. Effects on Surface Reaction Dynamics during CO and Ethylene Oxidation on Rh/$SiO_2$ Catalysts', Chem. Eng. Sci., Vol. 45, 1990, pp. 2597-2602 https://doi.org/10.1016/0009-2509(90)80147-7
  21. F. Qin and E. E. Wolf, 'Infrared Thermography Studies of Unsteady-State Processes during CO Oxidation on Supported Catalysts', Chem. Eng. Sci., Vol. 49, 1994, pp. 4263-4267 https://doi.org/10.1016/S0009-2509(05)80019-3
  22. F. C. Moates, M. Somani, J. Annamalai, J. T. Richardson, D. Luss, and R. C. Wilson, Ind. Eng. Chem., Vol. 35, 1996, p. 4801 https://doi.org/10.1021/ie960476k
  23. A. Holzwarth, H. -W. Schmidt, and W. F. Meier, 'Detection of Catalytic Activity in Combinatorial Libraries of Heterogeneous Catalysts by IR Thermography', Angew. Chem. Int. Ed., Vol. 37, 1998, pp. 2644-2647 https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2644::AID-ANIE2644>3.0.CO;2-#
  24. http://www.in-situresearch.com
  25. S. Velu, K. Suzuki and T. Osaki, 'Selective Production of Hydrogen by Partial Oxidation of Methanol over Catalysts Derived from CuZnAl-Layered Double Hydroxides', Catal. Lett., Vol. 62, 1999, pp. 159-167 https://doi.org/10.1023/A:1019023811688
  26. J. Agrell, K. Hallelbo, K. Jasson, S. G. Jams, and M. Boutonnet, 'Production of Hydrogen by Partial Oxidation of Methanol over Cu/ZnO Catalysts Prepared by Microemu1sion Technique', Appl. Catal. A: Gen., Vol. 211, 2001, pp. 239-250 https://doi.org/10.1016/S0926-860X(00)00876-0
  27. M. L. Cubeiro and J. L. G. Fierro, 'Selective Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts', J. Catal., Vol. 179, 1998, pp. 150-162 https://doi.org/10.1006/jcat.1998.2184