Cloning and Characterization of a Gene Encoding Phosphoketolase in a Lactobacillus paraplantarum Isolated from Kimchi

  • Jeong, Do-Won (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Jung-Min (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Hyong-Joo (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2007.05.31

Abstract

A gene coding for phosphoketolase, a key enzyme of carbohydrate catabolism in heterofermentative lactic acid bacteria(LAB), was cloned from a Lactobacillus paraplantarum C7 and expressed in Escherichia coli. The gene is 2,502 bp long and codes for a 788-amino-acids polypeptide with a molecular mass of 88.7 kDa. A Shine-Dalgarno sequence(aaggag) and an inverted-repeat terminator sequence are located upstream and downstream of the phosphoketolase gene, respectively. The gene exhibits an identity of >52% with phosphoketolases of other LAB. The phosphoketolase of Lb. paraplantarum C7(LBPK) contains several highly conserved phosphoketolase signature regions and typical thiamine pyrophosphate(TPP) binding sites, as reported for other TPP-dependent enzymes. The phosphoketolase gene was fused to a glutathione S-transferase(GST::LBPK) gene for purification. The GST::LBPK fusion protein was detected in the soluble fraction of a recombinant Escherichia coli BL21. The GST::LBPK fusion protein was purified with a yield of 4.32mg/400ml by GSTrap HP affinity column chromatography and analyzed by N-terminal sequencing. LBPK was obtained by factor Xa treatment of fusion protein and the final yield was 3.78mg/400ml. LBPK was examined for its N-terminal sequence and phosphoketolase activity. The $K_M\;and\;V_{max}$ values for fructose-6-phosphate were $5.08{\pm}0.057mM(mean{\pm}SD)$ and $499.21{\pm}4.33{\mu}mol/min/mg$, respectively, and the optimum temperature and pH for the production of acetyl phosphate were $45^{\circ}C$ and 7.0, respectively.

Keywords

References

  1. Goldberg, M., J. M. Fessenden, and E. Racker. 1966. Phosphoketolase. Methods Enzymol. 9: 515-520 https://doi.org/10.1016/0076-6879(66)09102-X
  2. Ha, D.-M., D.-S. Cha, and S.-G. Han. 1994. Identification of bacteriocin-producing lactic acid bacteria from kimchi and partial characterization of their bacteriocin. J. Microbiol. Biotechnol. 4: 305-315
  3. Hawkins, C. F., A. Borges, and R. N. Perham. 1989. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 255: 77-82 https://doi.org/10.1016/0014-5793(89)81064-6
  4. Heath, E. C., J. Hurwitz, B. L. Horecker, and A. Ginsburg. 1958. Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J. Biol. Chem. 231: 1009-1029
  5. Hun, B. and J. K. Kang. 1997. A study of present status and export promotion plan on kimchi. Korean J. Marketing Economics 14: 17-32
  6. Hurwitz, J. 1958. Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim. Biophys. Acta 28: 599-602 https://doi.org/10.1016/0006-3002(58)90526-2
  7. Kang, S.-M., W.-S. Yang, Y.-C. Kim, E.-Y. Joung, and Y.-G. Han. 1995. Strain improvement of Leuconostoc mesenteroides for kimchi fermentation and effect of starter. Korean J. Appl. Microbiol. Biotechnol. 23: 503-508
  8. Kim, H. J., J. H. Kim, J. H. Son, H. J. Seo, S. J. Park, N. S. Paek, and S. K. Kim. 2004. Characterization of bacteriocin produced by Lactobacillus bulgaricus. J. Microbiol. Biotechnol. 14: 503-508
  9. Kim, J. H., J.-Y. Park, S.-J. Jeong, J. Chun, J. H. Lee, D. K. Chung, and J. H. Kim. 2005. Characterization of the ${\alpha}-galactosidase$ gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 800-808
  10. Lee, C.-H. 1997. Lactic acid fermented foods and their benefits in Asia. Food Control 8: 259-269 https://doi.org/10.1016/S0956-7135(97)00015-7
  11. Lee, C.-W., C.-Y. Ko, and D.-M. Ha. 1992. Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Korean J. Appl. Microbiol. Biotechnol. 20: 102-109
  12. Lee, J.-H., M. Kim, D.-W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H.-Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from kimchi. J. Microbiol. Biotechnol. 15: 428-433
  13. Lee, J. M., D. W. Jeong, O. K. Koo, M. J. Kim, J. H. Lee, H. C. Chang, J. H. Kim, and H. J. Lee. 2005. Cloning and characterization of the gene encoding phosphoketolase in Leuconostoc mesenteroides isolated from kimchi. Biotechnol. Lett. 27: 853-858 https://doi.org/10.1007/s10529-005-6718-2
  14. Meile, L., L. M. Rohr, T. A. Geissmann, M. Herensperger, and M. Teuber. 2001. Characterization of the D-xylulose 5- phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J. Bacteriol. 183: 2929- 2936 https://doi.org/10.1128/JB.183.9.2929-2936.2001
  15. Mheen, T.-I. and T.-W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450
  16. Orban, J. I. and J. A. Patterson. 2000. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods 40: 221-224 https://doi.org/10.1016/S0167-7012(00)00133-0
  17. Park, J.-Y., S.-J. Jeong, J. Chun, J.-H. Lee, D. K. Chung, and J. H. Kim. 2006. Characterization of ptsHI operon from Leuconostoc mesenteroides SY1, a strain isolated from kimchi. J. Microbiol. Biotechnol. 16: 988-992
  18. Park, J.-Y., J.-S. Park, J.-H. Kim, S.-J. Jeong, J. Chun, J.-H. Lee, and J. H. Kim. 2005. Characterization of the catabolite control protein (CcpA) gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 749-755
  19. Racker, E. 1962. Fructose-6-phosphate phosphoketolase from Acetobacter xylinum. Methods Enzymol. 5: 276-280 https://doi.org/10.1016/S0076-6879(62)05219-2
  20. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467
  21. Schramm, M., V. Klybas, and E. Racker. 1958. Phosphorolytic cleavage of fructose 6-phosphate from Acetobacter xylinum. J. Biol. Chem. 233: 1283-1288
  22. Tinoco Jr., I., P. N. Borer, B. Dengler, M. D. Levin, O. C. Uhlenbeck, D. M. Crothers, and J. Bralla. 1973. Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol. 246: 40-41 https://doi.org/10.1038/newbio246040a0
  23. Veiga-da-Cunha, M., H. Santos, and E. Van Schaftingen. 1993. Pathway and regulation of erythritol formation in Leuconostoc oenos. J. Bacteriol. 175: 3941-3948 https://doi.org/10.1128/jb.175.13.3941-3948.1993