Purification and Characterization of Extracellular $\beta$-Glucosidase from Sinorhizobium kostiense AFK-13 and Its Algal Lytic Effect on Anabaena flos-aquae

  • Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
  • Published : 2007.05.31

Abstract

A $\beta$-glucosidase from the algal lytic bacterium Sinorhizobium kostiense AFK-13, grown in complex media containing cellobiose, was purified to homogeneity by successive ammonium sulfate precipitation, and anion-exchange and gel-filtration chromatographies. The enzyme was shown to be a monomeric protein with an apparent molecular mass of 52 kDa and isoelectric point of approximately 5.4. It was optimally active at pH 6.0 and $40^{\circ}C$ and possessed a specific activity of 260.4 U/mg of protein against $4-nitrophenyl-\beta-D-glucopyranoside$(pNPG). A temperature-stability analysis demonstrated that the enzyme was unstable at $50^{\circ}C$ and above. The enzyme did not require divalent cations for activity, and its activity was significantly suppressed by $Hg^{+2}\;and\;Ag^+$, whereas sodium dodecyl sulfate(SDS) and Triton X-100 moderately inhibited the enzyme to under 70% of its initial activity. In an algal lytic activity analysis, the growth of cyanobacteria, such as Anabaena flos-aquae, A. cylindrica, A. macrospora, Oscillatoria sancta, and Microcystis aeruginosa, was strongly inhibited by a treatment of 20 ppm/disc or 30 ppm/disc concentration of the enzyme.

Keywords

References

  1. Berger, P. S., J. Rho, and H. B. Gunner. 1979. Bacterial suppression of Chlorella by hydroxylamine production. Water Res. 13: 267-273 https://doi.org/10.1016/0043-1354(79)90205-7
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Castenholz, R. W. 1988. Culturing methods for cyanobacteria. Methods Enzymol. 167: 68-92 https://doi.org/10.1016/0076-6879(88)67006-6
  4. Choi, H. J., B. H. Kim, J. D. Kim, and M. S. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol. Control 33: 335-343 https://doi.org/10.1016/j.biocontrol.2005.03.007
  5. Colombo, V., A. A. H. Vieira, and G. Moraes. 2004. Activity of glycosidases from freshwater heterotrophic microorganisms on the degradation of extrace luIlar polysaccharide produced by Anabaena spiroides (Cyanobacteria). Braz. J. Microbiol. 35: 110-116 https://doi.org/10.1590/S1517-83822004000100018
  6. Elisashvili, V. I., T. S. Khardziani, N. D. Tsiklauri, and E. T. Kachlishvili. 1999. Cellulase and xylanase activities in higher basidiomycetes. Biochemistry (Moscow) 64: 718-722
  7. Gonzalez, J. M., W. B. Whitman, R. E. Hodson, and M. A. Moran. 1996. Identifying numerically abundant culturable bacteria from complex communities: An example from a lignin enrichment culture. Appl. Environ. Microbiol. 62: 4433-4440
  8. Harchand, R. K. and S. Singh. 1997. Characterization of cellulase complex of Streptomyces albaduncus. J. Basic Microbiol. 37: 93-103 https://doi.org/10.1002/jobm.3620370204
  9. Hyun, H. H. and J. G. Zeikus. 1985. Regulation and genetic enhancement of beta-amylase production in Clostridium thermosulfurogenes. J. Bacteriol. 164: 162-1170
  10. Jung, H.-K., G.-D. Kim, and T.-J. Choi. 2006. Activity of early gene promaters from a Korean Chlorella virus isolate in transformed Chlorella algae. J. Microbiol. Biotechnol.16: 952-960
  11. Kim, J.-D.. and C.-G. Lee. 2006. Differential respanses of two freshwater cyanobacteria, Anabaena variabilis and Nostoc commune, to sulfanylurea herbicide bensulfuron-methyl. J. Microbiol. Biotechnol. 16: 52-56
  12. Kim, J.-D., and C.-G. Lee. 2006. Antialgal effect of a novel palysaccharolytic Sinorhizobium kostiense AFK-13 an Anabaena flos-aquae causing water bloom. J. Microbiol. Biotechnol. 16: 1613-1621
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriaphage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  14. Lee, S. O., J. Kato, N. Takiguchi, A. Kuroda, T. lkeda, A. Mitsutani, and H. Ohtake. 2000. lnvolvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoaheromonas sp. strain A28. Appl. Environ. Microbiol. 66: 4334-4339 https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  15. Lucas, R., A. Robles, G. A. de Cienfuegos, and A. Galvez. 2000. ${\beta}-Glucosidase$ from Chalara paradoxa, CH32:Purification and properties. J. Agric. Food Chem. 48: 3698-3703 https://doi.org/10.1021/jf0002591
  16. Merril, C. R., M. Harrinton, and V. Alley. 1984. A photodevelopment silver stain far the rapid visualizatian of proteins separated an polyacrylamide gels. Electrophoresis 5: 289-297 https://doi.org/10.1002/elps.1150050509
  17. Nakkharat, P. and D. Haltrich. 2006. Purificatian and characterisatian of an intracellular enzyme with beta-glucasidase and beta-galactosidase activity from the thermaphilic fungus Talaromyces thermophilus CBS 236.58. J. Biotechnol. 123:304-313 https://doi.org/10.1016/j.jbiotec.2005.12.015
  18. Nelson, N. J. 1957. Calorimetric analysis of sugar. Methods Enzymol. 3: 85-86
  19. Riccio, P., R. Rassana, M. Vinella, P. Damizio, F. Zito, F. Sansevrino, A. D'Elia, and I. Rosi. 1999. Extraction and immobilization in one step of two beta-glucosidases released from a yeast strain of Debaryomyces hansenii. Enzyme Microb. Technol. 24: 123-129 https://doi.org/10.1016/S0141-0229(98)00066-0
  20. Sakata, T., Y. Fujita, and H. Yasumoto. 1991. Plaque formation by algicidal Saprospira sp. an a lawn of Chaetoceros ceratosporum. Nippon Suisan Gakkaishi 57: 1147-1152 https://doi.org/10.2331/suisan.57.1147
  21. Sestelo, A. B. F., M. Paza, and T. G. Villa. 2004. ${\beta}-Glucosidase$ activity in a Lactobacillus plantarum wine strain. World J. Microbiol. Biotechnol. 20: 633-637 https://doi.org/10.1023/B:WIBI.0000043195.80695.17
  22. Skory, C. D., S. N. Freer, and R. J. Bathast. 1996. Properties of an intracellularbeta-glucosidase purified from the cellabiose-fermenting yeast Canadida wickerhamii. Appl. Microbiol. Biotechnol. 46: 353-359
  23. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 159: 19
  24. Somville, M. 1984. Measurement and study of substrate specificity of exoglucosidase activity in entrophic water. Appl. Environ. Micriobiol. 48: 1181-1185
  25. Unanue, M., B. Ayo, D. Slezak, G. J. Herndi, and J. Irriberri. 1999. Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model. Mar. Ecol. 37: 36-48
  26. Villena, M. A., J. F. U. Iranzo, R. R. C. Otero, and A. I. B. Perez. 2005. Optimization of a rapid method for studying the cellular location of beta-glucosidase activity in wine yeasts. J. Appl. Microbiol. 99: 558-564 https://doi.org/10.1111/j.1365-2672.2005.02627.x
  27. Villena, M. A., J. F. U. Iranzo, S. B. Gundllapalli, R. R. C. Otero, and A. I. B. Perez. 2006. Characterization of an exocellular beta-glucosidase from Debaryomyces pseudopolymorphus. Enzyme Microb. Technol. 39: 229-234 https://doi.org/10.1016/j.enzmictec.2005.10.018
  28. Wang, X. L., L. Y Gong, S. K. Liang, X. R. Han, C. J. Zhu, and Y. B. Li. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aerugznosa. Harmful Algae 4: 433-443 https://doi.org/10.1016/j.hal.2004.06.001
  29. Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida, and K.-I. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in eutrophic lake. J. Appl. Phycol. 10: 391-397 https://doi.org/10.1023/A:1008077414808
  30. Yang, L., Z. S. Ning, C. Z. Shi, Z. Y. Chang, and L. Y. Huan 2004. Purification and characterization of an isoflavone-conjugates-hydrolyzing beta-glucosidase from endophytic bacterium. J. Agric. Food Chem. 52: 1940-1944 https://doi.org/10.1021/jf030476c
  31. Zuniga, M., M. D. Miralles, and G. Perez-Martinez. 2002. The product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Appl. Environ. Microbiol. 68: 6051-6058 https://doi.org/10.1128/AEM.68.12.6051-6058.2002