Diversity of Paenibacillus spp. in the Rhizosphere of Four Sorghum(Sorghum bicolor) Cultivars Sown with Two Contrasting Levels of Nitrogen Fertilizer Assessed by rpoB-Based PCR-DGGE and Sequencing Analysis

  • Coelho, Marcia Reed Rodrigues (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Mota, Fabio Faria Da (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Carneiro, Newton Portilho (EMBRAPA/CNPMS-Empresa Brasileira de Pesquisa Agropecuaria, Centro Nacional de Pesquisas de Milho e Sorgo) ;
  • Marriel, Ivanildo Evodio (EMBRAPA/CNPMS-Empresa Brasileira de Pesquisa Agropecuaria, Centro Nacional de Pesquisas de Milho e Sorgo) ;
  • Paiva, Edilson (EMBRAPA/CNPMS-Empresa Brasileira de Pesquisa Agropecuaria, Centro Nacional de Pesquisas de Milho e Sorgo) ;
  • Rosado, Alexandre Soares (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Seldin, Lucy (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro)
  • Published : 2007.05.31

Abstract

The diversity of Paenibacillus species was assessed in the rhizospheres of four cultivars of sorghum sown in Cerrado soil amended with two levels of nitrogen fertilizer(12 and 120 kg/ha). Two cultivars(IS 5322-C and IS 6320) demanded the higher amount of nitrogen to grow, whereas the other two(FBS 8701-9 and IPA 1011) did not. Using the DNA extracted from the rhizospheres, a Paenibacillus-specific PCR system based on the RNA polymerase gene(rpoB) was chosen for the molecular analyses. The resulting PCR products were separated into community fingerprints by DGGE and the results showed a clear distinction between cultivars. In addition, clone libraries were generated from the rpoB fragments of two cultivars(IPA 1011 and IS 5322-C) using both fertilization conditions, and 318 selected clones were sequenced. Analyzed sequences were grouped into 14 Paenibacillus species. A greater diversity of Paenibacillus species was observed in cultivar IPA 1011 compared with cultivar IS 5322-C. Moreover, statistical analyses of the sequences showed that the bacterial diversity was more influenced by cultivar type than nitrogen fertilization, corroborating the DGGE results. Thus, the sorghum cultivar type was the overriding determinative factor that influenced the community structures of the Paenibacillus communities in the habitats investigated.

Keywords

References

  1. Bent E., S. Tuzun, C. P. Chanway, and S. Enebak. 2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol. 47: 793-800 https://doi.org/10.1139/cjm-47-9-793
  2. Berge, O., T. Heulin, W. Achouak, C. Richard, R. Bally, and J. Balandreau. 1991. Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can. J. Microbiol. 37: 195-203 https://doi.org/10.1139/m91-030
  3. Berge, O., M. H. Guinebretiere, W. Achouak, P. Normand, and T. Heulin. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52: 607-616 https://doi.org/10.1099/00207713-52-2-607
  4. Burgmann, H., S. Meier, M. Bunge, F. Widmer, and J. Zeyer. 2005. Effects of model root exudates on structure and activity of a soil diazotroph community. Environ. Microbiol. 11: 1711-1724
  5. Carelli, M., S. Gnocchi, S. Francelli, A. Mengoni, D. Paffetti, C. Scotti, and M. Bazzicalupo. 2000. Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfafa cultivars in Italian soils. Appl. Environ. Microbiol. 66: 4785-4789 https://doi.org/10.1128/AEM.66.11.4785-4789.2000
  6. Chelius M. K. and E. W. Triplett. 2001. The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microbial Ecol. 41: 252-263 https://doi.org/10.1007/s002480000087
  7. Cheong, H., S.-Y. Park, C.-M. Ryu, J. F. Kim, S.-H. Park, and C. S. Park. 2005. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J. Microbiol. Biotechnol. 15: 1286-1298
  8. Cocking, E. C. 2003. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252: 169-175 https://doi.org/10.1023/A:1024106605806
  9. Cocolin, L. and G. Comi. 2005. Use of a culture-independent molecular method to study the ecology of Yersinia spp. in food. Int. J. Food Microbiol. 105: 71-82 https://doi.org/10.1016/j.ijfoodmicro.2005.05.006
  10. Coelho, M. R. R., I. von der Weid, V. Zahner, and L. Seldin. 2003. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiol. Lett. 222: 243-250 https://doi.org/10.1016/S0378-1097(03)00300-8
  11. Dahllof, I., H. Baillie, and S. Kjelleberg. 2000. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66: 3376-3380 https://doi.org/10.1128/AEM.66.8.3376-3380.2000
  12. Di Cello, F., A. Bevivino, L. Chiarini, R. Fani, D. Paffetti, S. Tabacchioni, and C. Dalmastri. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 63: 4485-4493
  13. Drancourt, M. and D. Raoult. 2002. rpoB gene sequencebased identification of Staphylococcus species. J. Clin. Microbiol. 40: 1333-1338 https://doi.org/10.1128/JCM.40.4.1333-1338.2002
  14. Felske A., A. Wolterink, R. V. Lis, and A. D. L. Akkermans. 1998. Phylogeny of the main bacterial 16S rRNA sequences in DRENTSE A grasslands soils (The Netherlands). Appl. Environ. Microbiol. 64: 871-879
  15. Garcia de Salamone, I., J. Dobereiner, S. Urquiaga, and R. M. Boddey. 1996. Biological nitrogen fixation in Azospirillum strain-maize genotype association as evaluated by $^{15}N isotope dilution technique. Biol. Fertil. Soils 23: 249-256 https://doi.org/10.1007/BF00335952
  16. Giller, K. E. 2001. Nitrogen Fixation in Tropical Cropping System, 2nd Ed. CAB International, Wallingford, Oxon, United Kingdom
  17. Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
  18. Gomes, N. C. M., H. Heuer, J. Schonfield, R. Costa, L. Mendonca-Hagler, and K. Smalla. 2001. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232: 167-180 https://doi.org/10.1023/A:1010350406708
  19. Grayston, S. J., G. S. Griffith, J. L. Mawdsley, C. D. Campbell, and R. D. Bardgett. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ecosystem. Soil Biol. Biochem. 33: 533-551 https://doi.org/10.1016/S0038-0717(00)00194-2
  20. Griffiths, B. S., K. Ritz, N. Ebblewhite, and G. Dobson. 1999. Soil microbial community structure: Effects of substrate loading rates. Soil Biol. Biochem. 31: 145-153 https://doi.org/10.1016/S0038-0717(98)00117-5
  21. Jung, W.-J., J.-H. Kuk, K.-Y. Kim, T.-H. Kim, and R.-D. Park. 2005. Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J. Microbiol. Biotechnol. 15: 274-280
  22. Kanungo, P. K., B. Kamakrishnan, and V. R. Rao. 1997. Placement effects of organic sources on nitrogenase activity and nitrogen-fixing bacteria in flooded rice soils. Biol. Fert. Soils 25: 103-108 https://doi.org/10.1007/s003740050288
  23. Lovell, C. R., M. J. Friez, J. W. Longshore, and C. E. Bagwell. 2001. Recovery and phylogenetic analysis of nifH from diazotrophic bacteria associated with dead aboveground biomass of Spartina alterniflora. Appl. Environ. Microbiol. 67: 5308-5314 https://doi.org/10.1128/AEM.67.11.5308-5314.2001
  24. Lynch, J. M. 1990. Beneficial interactions between microorganisms and roots. Biotechnol. Adv. 8: 335-346 https://doi.org/10.1016/0734-9750(90)91069-S
  25. Margelef, D. R. 1958. Information theory in ecology. Gen. Syst. 3: 36-71
  26. Mavingui, P. and T. Heulin. 1994. In vitro chitinase antifungal activity of a soil, rhizosphere and rhizoplane populations of Bacillus polymyxa. Soil Biol. Biochem. 26: 801-803 https://doi.org/10.1016/0038-0717(94)90277-1
  27. Mollet, C., M. Drancourt, and D. Raoult. 1997. rpoB Sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 26: 1005-1011 https://doi.org/10.1046/j.1365-2958.1997.6382009.x
  28. Mota, F. F., E. A. Gomes, E. Paiva, A. S. Rosado, and L. Seldin. 2004. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett. Appl. Microbiol. 39: 34-40 https://doi.org/10.1111/j.1472-765X.2004.01536.x
  29. Mota, F. F., E. A. Gomes, E. Paiva, and L. Seldin. 2005. Assessment of the diversity of Paenibacillus species by a novel rpoB-based PCR-DGGE method. FEMS Microbiol. Ecol. 52: 317-328
  30. Mota, F. F., A. Nobrega, I. E. Marriel, E. Paiva, and L. Seldin. 2002. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of four maize genotypes plants in Cerrado soil. Appl. Soil Ecol. 20: 119-132 https://doi.org/10.1016/S0929-1393(02)00016-1
  31. Muyzer, G., A. Felske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172 https://doi.org/10.1007/BF02529967
  32. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A.Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rDNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178: 5636-5643 https://doi.org/10.1128/jb.178.19.5636-5643.1996
  33. Paffetti, D., C. Scotti, S. Gnocchi, S. Francelli, and M. Bazzicalupo. 1996. Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl. Environ. Microbiol. 62: 2279-2285
  34. Peixoto, R. S., H. L. da Costa Coutinho, N. G. Rumjanek, A. Macrae, and A. S. Rosado. 2002. Use of rpoB and 16S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Lett. Appl. Microbiol. 35: 316-320 https://doi.org/10.1046/j.1472-765X.2002.01183.x
  35. Pielou, E. C. 1969. Association tests versus homogeneity tests: Their use in subdividing quadrats into groups. Vegetation 18: 4-18 https://doi.org/10.1007/BF00332826
  36. Renesto, P., J. Gouvernet, M. Drancourt, V. Roux, and D. Raoult. 2001. Use of rpoB gene analysis for detection and identification of Bartonella species. J. Clin. Microbiol. 39: 430-437 https://doi.org/10.1128/JCM.39.2.430-437.2001
  37. Renouf V., O. Claisse, C. Miot-Sertier, and A. Lonvaud-Funel. 2006. Lactic acid bacteria evolution during winemaking: Use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiol. 23: 136-145 https://doi.org/10.1016/j.fm.2005.01.019
  38. Rodriguez-Diaz, M., L. Lebbe, B. Rodelas, J. Heyrman, P. De Vos, and N. A. Logan. 2005. Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int. J. Syst. Evol. Microbiol. 55: 2093-2099 https://doi.org/10.1099/ijs.0.63395-0
  39. Ryu, C.-M., J. W. Kim, O. Choi, S.-Y. Park, S.-H. Park, and C.-S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  40. Sakiyama, C. C. H., E. M. Paula, P. C. Pereira, A. C. Borges, and D. O. Silva. 2001. Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett. Appl. Microbiol. 33: 117-121 https://doi.org/10.1046/j.1472-765x.2001.00961.x
  41. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  42. Seldin, L., A. S. Rosado, D. W. Cruz, A. Nobrega, J. D. Van Elsas, and E. Paiva. 1998. Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere and non-root-associated soil from maize planted in two different Brazilian soils. Appl. Environ. Microbiol. 64: 3860-3868
  43. Silva, K. R. A., J. F. Salles, L. Seldin, and J. D. Van Elsas. 2003. Application of a novel Paenibacillus-specific PCRDGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J. Microbiol. Methods 54: 213-231 https://doi.org/10.1016/S0167-7012(03)00039-3
  44. Walker, R., A. A. Powell, and B. Seddon. 1998. Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J. Appl. Microbiol. 84: 791-801 https://doi.org/10.1046/j.1365-2672.1998.00411.x
  45. Yang, C. H. and D. E. Crowley. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66: 345- 351 https://doi.org/10.1128/AEM.66.1.345-351.2000