Variation in the Lipid Class and Fatty Acid Composition of Thraustochytrium aureum ATCC 34304

Thraustochytrium aureum ATCC 34304의 지질 및 지방산 조성 변화

  • Jeh, Eun-Jin (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Song, Sang-Kyu (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Seo, Jeong-Woo (Molecular Bioprocess Research Center, KRIBB) ;
  • Hur, Byung-Ki (Department of Biological and Chemical Engineering, College of Engineering, Inha University)
  • 제은진 (인하대학교 공과대학 생물공학과) ;
  • 송상규 (인하대학교 공과대학 생물공학과) ;
  • 서정우 (한국생명공학연구원) ;
  • 허병기 (인하대학교 공과대학 생물공학과)
  • Published : 2007.02.28

Abstract

The heterotrophic marine algae Thraustochytrium aureum ATCC 34304 produces substantial amount of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA). In this study, changes in the lipid and fatty acid compositions of Thraustochytrium aureum ATCC 34304 were investigated according to the growth stage. The major lipids of Thraustochytrium aureum ATCC 34304 were found to be composed of triacylglyceride (TAG), phospholipid (PL), and sterol (ST). The content of triacylglyceride increased during the exponential phase of cell growth, but the content of phospholipid decreased. The composition of total polyunsaturated fatty acids decreased from 60.3% to 45.3% and that of docosahexaenoic acid from 42.1% to 33.9% in the triacylglyceride. The composition of total saturated fatty acids, however, increased from 24.9% to 27.8%. The content of total polyunsaturated fatty acids decreased greatly from 48.0% to 17.5% but the decrease in the content of saturated fatty acids was slight in phospholipid.

본 연구에서는 배양시간에 따른 Thraustochytrium aureum ATCC 34304 균체 내부에 저장하는 지질의 지방산조성 및 균체 막에 축척하는 지질 내의 지방산조성의 변화 과정을 정량적으로 규명하였다. 건조균체량은 배양 5일째에 3.94 g/L를 나타내었으며, 균체당의 지질 함량은 배양 3일째에 최대값 25.0%를 나타내었다. 균체 내의 triacylglyceride (TAG)량은 배양 3일까지는 증가하였으나 그 이후에는 거의 일정한 값을 유지하였다. 반면 세포막을 구성하는 phospholipid (PL)의 함량은 3일까지는 감소하나 그 이후에는 일정한 값을 나타내었다. TAG를 구성하고 있는 다중불포화지방산의 함량은 배양 초기 60.3%이였으나 배양 5일 후에는 45.3%까지 감소하였으며, DHA는 42.1%에서 33.9% 까지 감소하였다. 포화지방산의 함량은 배양 초기에는 24.9%이었으나 배양 5일 후에는 27.8%까지 증가하였다. PL 내의 불포화지방산의 함량은 배양시간에 따라 48.0%에서 17.5%까지 크게 감소하는 경향을 나타내었으나, 포화지방산의 함량은 오차범위 내에서의 감소 경향을 나타내었다. 본 연구 결과에 의하면 배양시간이 경과하여 배양액내의 영양 환경이 열악하게 되는 경우 균주는 포화지방산보다 불포화지방산을 에너지원으로 우선 사용한다고 해석할 수 있다.

Keywords

References

  1. Mehta, J., L. M. Lopez, and T. Wargovish (1987), Eicosapentaenoic acid: its relevance in artherosclerosis and coronary artery disease, Am, J. Cardiol. 59, 155-159 https://doi.org/10.1016/S0002-9149(87)80090-5
  2. Urakaze, M., T. Hamazaki, V. Soda, M. Miyamoto, F. Iloki, F. Yano, and A. Kumagai (1986), Infusion of emulsified trieicosapentaenoyl-glycerol into rabbits the effects on platelet aggregation, polymorphonuclear leukocyte adhesion, and fatty acid composition in plasma and platelet phospholipids, Thrombo. Res. 44, 673-682 https://doi.org/10.1016/0049-3848(86)90168-4
  3. Mortensen, J. Z., F. D. Schmidt. A. H. Nielsen, and J. Dyerberg (1983), The effect of N-6 and N-3 polyunsaturated fatty acids on hemostasis, blood lipids and blood pressure, Thromb. Hoemose. 50, 543-546
  4. Lands, W. E. (1986), In: Kifer, R. R. and Martin, R. E., editors, Health effects of polyunsaturated fatty acids in seafoods. FL: Academic Press, Orlando, 319
  5. Kremer, J. M., J. Biguiuette, and A. U. Michalek (1985), Effects of manipulationg dietary fatty acids on clinical manifestations of rheumatoid arthritis, Lancet. 1, 184-187
  6. Ziboh, V. A., K. A. Cohen, C. N. Ellis, C. Miller, T. A. Hamilton, K. Kragballe, C. R. Hydrick, and J. J. Voorhees (1986), Effects of dietary supplementation of fish oil on neutrophil and epidermal fatty acids. Modulation of clinical course of psoriatic subjects, Arch. Dermatol. 122, 1277-1282 https://doi.org/10.1001/archderm.122.11.1277
  7. Robinson, D. R., J. D. Prickett, G. T. Makoul, A. D. Steinberg, and R. B. Colvin (1986), Dietary fish oil reduces progression of established renal disease in (NZB x NZW) F1 mice and delays renal disease in BXDB and MRL/1 strains, Arthritis Rheum. 29, 539-546 https://doi.org/10.1002/art.1780290412
  8. Dratz, E. A. and A. J. Deese (1986), Health effects of polyunsaturated fatty acid in seafoods. Academic press Inc., USA. 319-330
  9. Gason, A., H. Jacques, S. Moorjani, Y. Deshaies, L. D. Brun, and P. Julien (1996), Plasma lipoprotein profile and lipolytic activities in response to the substitution of learn white fish for other animal protein sources in premenopausal women, Am. J. Clin. Nutr. 63, 315-321 https://doi.org/10.1093/ajcn/63.3.315
  10. Yongmanitchai, W. and O. P. Ward (1989), Omega-3 fatty acids: alternative sources of production , Process Biochem. 24, 117-125
  11. Henderson, R. J., J. W. Leftley, and J. R. Sargent (1988), Lipid composition and biosynthesis in the marine dinoflagellare Crypthecodinium cohnii. Phytochemistry, 27, 1679-1683 https://doi.org/10.1016/0031-9422(88)80425-4
  12. Gunstone, F. D. (2001), Structure and modified lipids. New York: Marcel Dekker
  13. Davies, R. J. (1992) In: Kyle, D. J., and C. Ratledge, editors. Industrial applications of single cell oils. Champaign, IL: American Oil Chemists' Society, 196-218
  14. Ward, O. P. (1989), Fermentation biotechnology. UL: Open University Press
  15. Ratledge, C. and J. P. Wynn (2001), The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1-51
  16. Bajpai, P. K., P. Bajpai, and O. P. Ward (1991), Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304, J. Amer. Oil Chem. Soc. 68, 509-514 https://doi.org/10.1007/BF02663823
  17. Cohen, Z., A. Vonshak, and A. Richmond (198'7), Fatty acid composition of spirulina grown under various conditions, Phytochemistry 26, 2255-2258 https://doi.org/10.1016/S0031-9422(00)84694-4
  18. Singh, A. and O. P. Ward (1996), Production of high yields of docosahexaenoic acid by Thraustochytrium reseum ATCC 28210, J. Ind. Microbiol. 16, 370-373 https://doi.org/10.1007/BF01570118
  19. Stinson, E. E., R. Kwoczak, and M. Kurants (1991), Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare, J. Ind. Microbiol. 8, 171-178 https://doi.org/10.1007/BF01575850
  20. Jiang, Y. and F. Chen (2000), Effect of medium glucose coucentration and pH on docosahexaenoic acid content of heterotrophic Crythecodinium cohnii, Process Biochem. 35, 1205-1209 https://doi.org/10.1016/S0032-9592(00)00163-1
  21. Kim, W. H., S. H. Park, S. K. Song, K. D. Bae, and B. K. Hur (2005), The effect of weight ratio of carbon source to nitrogen source on the growth and the composition of fatty acid of Thraustochytrium aureum ATCC 34304, Korean J. Biotechnol. Bioeng. 20, 266-270
  22. Ward, O. P. and A. Singh (2005), Omega-3/6 fatty acids: Alternative sources of production, Process Biochemistry, 40, 3627-3652 https://doi.org/10.1016/j.procbio.2005.02.020
  23. Lepage, G., and C. C. Roy (1984), Improved recovery of fatty and through direct transesrerification without prior extraction or purification, J. Lipid Res. 25, 1391-1396
  24. Regnault, A., D. Chervin, A. Chammal, F. Piton , R. Calvayrac, and P. Mazliak (1995), Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance, Phytochemistry 40, 725-733 https://doi.org/10.1016/0031-9422(95)00268-C
  25. Hodgson, P. A., R. J. Henderson, J. R. Sargent, and J. W. Leftley (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture, J. Appl. Phycology 3, 169-181 https://doi.org/10.1007/BF00003699
  26. Morita, E., Y. Kumon, T. Nakahara, S. Kagiwada, and T. Noguchi (2006) Docosahexaenoic acid production and lipid-body formation in Schizochytrium Iimacinum SR21, Marine Biotechnology 8, 319-327 https://doi.org/10.1007/s10126-005-5060-y