AChE Inhibitory Effect and Antioxidative Activity of Submerged Cultured Products from Hericium erinaceum

Hericium erinaceum 액체배양 생성물의 Acetyl-cholinesterase 저해 활성과 항산화 활성

  • Jung, Jae-Hyun (Department of Biotechnology, Faculty of Life Science, Konkuk University) ;
  • Lee, Shin-Young (Department of Biotechnology and Engineering, Kangwon National University)
  • Published : 2007.02.28

Abstract

The water-soluble or ethanol-soluble materials extracted from fruit bodies and cultured products (mycelium and broth) of H. erinaceum were prepared, and their inhibitory effect on acetylcholinesterase (AChE) activity from Electrophorous electricus was investigated. Inhibition of 75-85% for AChE activity at concentration of 10 mg/ml was obtained and the mechanism was due to general non-competitive inhibition. Especially, the supernatant of culture broth by ethanol treatment, exhibited a strong inhibition activity of 94% at 10 mg/ml. The samples from fruit body, mycelium and broth (supernatant and precipitate by ethanol treatment) which were extracted from H. erinaceum, were very effective to inhibit the initial stage oxidation of a linoleic acid at concentration of 0.1 mg/ml. The antioxidative activity of these samples were superior than rutin, vitamin C and tocopherol as antioxidative standards by FTC (ferric thiocyanate) method, and also showed the very strong antioxidative activity of 95% without significant difference of the samples by TBA-RS (thiobarbituric acid-reactive substance) method.

H. erinaceum은 현재 산업적으로 매우 주목되고 있는 기능성 소재들 중의 하나이다. 본 연구에서는 식용은 물론 각종 약리효과를 나타내는 H. erinaeum의 기능성 식품의 제품화 연구 일환으로, 지금까지 체계적으로 연구된 바 없는 H. erinaceum의 액체배양을 시도하고, 이 버섯의 액체배양 생성물의 acetylcholinestrase (AChE) 저해활성과 항산활성의 효과를 자실체와 비교하면서 평가, 규명하고자 하였다. Electrophorous electricus 유래 AChE에 대한 저해 활성을 조사한 결과, 자실체 및 배양 생성물 (균사체와 배양여액)은 10 mg/ml 농도에서 75$\sim$85%의 저해활성을 보였고, 저해기작은 모두 일반적 비경쟁적 저해 (general non-competitive inhibition)에 의하였다. 특히, 배양여액의 ethanol 침전 상징액은 10 mg/ml의 농도에서 약 94%의 매우 높은 저해활성을 보였다. 한편, linoleic acid를 기질로 한 지질과산화에 대한 노루궁뎅이 버섯 유래 시료들 (자실체와 균사체 추출물, 균사체 추출물의 ethanol 침전물 및 배양여액)의 억제능을 Rhodan-Fe (FTC)법으로 조사한 결과, 균사체와 자실체 추출물은 0.1 mg/ml의 농도에서 지질의 초기 과산화를 완전히 억제하였다. 또 TBA-RS로 조사한 경우도 항산화 표준품으로 사용한 tocopherol, vitamin C 및 rutin보다 우수하였고, 시료들 간의 큰 차이 없이 약 95%의 매우 우수한 지질과산화 억제율을 나타내었다.

Keywords

References

  1. Kawagishi, H., M. Ando, K. Shinba, H. Sakamoto, S. Yoshida, F. Ojima, Y. Ishiguro, N. Ukai, and S. Furukawa (1993), Chromans, hericenones F, G and H from the mushroom Hericium erinaceum, Phytochemistry 32(1), 175-178 https://doi.org/10.1016/0031-9422(92)80127-Z
  2. Kawagishi , H., A. Shimada, R. Shirai, K. Okamoto, F Ojiima, H. Sakamoto, Y. Ishiguro, and S. Furukawa (1994), Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum, Tetrahedron Letter 35(10), 1569-1572 https://doi.org/10.1016/S0040-4039(00)76760-8
  3. Kawagishi, H., Shimada, A., Hosokawa, S., Mori, H., Sakamoto, H., Ishiguro, Y., Sukemi, S., J. Bordner, N. Kojima, and S. Furukawa (1996), Erinacines E, F and G, stimulators of nerve growth facror(NGF)-synthesis, from the mycelia of Hericium erinaceum, Tetrahedron Letter 37(41), 7399-7402 https://doi.org/10.1016/0040-4039(96)01687-5
  4. Kawagishi , H., Shimada, A., Shiznki. K., Mori, H., Okamoto, K., Sakamoto, H., and S. Furukawa (1996), Erinacines D, a stimulator of nerve growth factor (NGF)- synthesis, from the mycelia of Hericium erinaceum, Heterocycl. Commun. 2(1), 51-54
  5. Furukawa, S. and H. Kawagishi (1991), Physiological significance and the synrhesis-prmoting substances of nerve growth factor (NGF), Chemistry & Biology 29(10), 640-646
  6. Hugo, L. H., D. M. Richardo, and C. L. Nibaldo (1996), Tetrameric(G4) acetyl- cholinesterase: structure, localization, and physiological regulation, J. Neurochem. 66, 1335-1346 https://doi.org/10.1046/j.1471-4159.1996.66041335.x
  7. Younkin , S. G., B. Goodridge, J. Katz, G . Lockett, D. Nafziger, M. F. Usiak, and L. H. Younkin (1986), Molecular forms of acetylcholinesterases in Alzheimer's disease, Fed. Proc. 45, 2980-2988
  8. Gasparin, L., M. Rasshi, G. Binetti, M. Trabucchi, S. B. Solerte, D. Alkon, R. Ercheberrigary, G. Gibson, J. Blass, R. Paoletti, and S. Govoin (1998), Peripheral markers in testing pathophysiological hypothesis and diagnosing Alzheimer's disease, FASEB J. 12, 17-34 https://doi.org/10.1096/fasebj.12.1.17
  9. Chemnitis , J. M., K. H. Haselmeye, B. D. Gonska, H. Kreuzer, and R. Zech (1996), Indirect parasympathomimetic activity of metoclopramide: reversible inhibition of cholinesterases from human central nervous system and blood, Pharmacol. Res. 34, 65-72 https://doi.org/10.1006/phrs.1996.9999
  10. Brufani, M., L. Filocamo, S. Lappa, and A. Maggi (1997), New acetyl- cholinesterase inhibitors, Drugs Future 22, 397-411
  11. Wanda, J. K., J. S. John, and R. C. Neal (1999), Cholinesterase inhibitors: a therapeutic strategy for Alzheimer's disease, Ann. Pharmacother. 33, 441-450 https://doi.org/10.1345/aph.18211
  12. Markesbery, M. R. and M. A. Lovell (1998), Four-hydroxynonenal, a product of lipid peroxidation, is increased in Alzheimer's disease, NurobioI. Aging. 19, 33-36 https://doi.org/10.1016/S0197-4580(98)00009-8
  13. Sayre, L. M., D. A. Zelasko, and P. L. R. Harris (1997), 4-hydroxynonenal- derived advanced lipid peroxidation end products are increased in Alzheimer's disease, J. Neurochem. 68, 2092-2097 https://doi.org/10.1046/j.1471-4159.1997.68052092.x
  14. Kopal, T., R. Subramanian, J. Drake, and R. Prasad (1998), Vitamin E protects against Alzheimer's amyloid peptide(25-35) induced changes in neocortical snaptosomal membrane lipid structure and composition, Brain Res. 786, 270-273 https://doi.org/10.1016/S0006-8993(97)01466-2
  15. Gwebu, E. T., M. Selassie, N. T. Gwebu, S. Richardson, D. Mathis, J. William, and J. Waden (1997), Cytotoxicity of ${\beta}-amyloid_{(25-35)}$ on vascular muscle cells and attenuation by vitamin E. In Vitro Cell, Dev. BioI. Anim. 33, 672-673 https://doi.org/10.1007/s11626-997-0122-2
  16. Ellman, G. L., K. D. Coutuney, V. Andres, and R. M. Featherstone (1961), A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7, 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  17. Segel, I. H. (1975), Enzyme Kinetics, A Wiley-Interscience Publication, New York, pp.100-160, 161-226
  18. Giacobini, E. (1997), From molecular Structure to Alzheimer therapy, Jpn, J. Pharmacol. 74, 225-241 https://doi.org/10.1254/jjp.74.225
  19. SAS (1988), Statistical Analysis System, Property software (Release 6.03 ed.). SAS Institute Inc., Cary, NC, USA
  20. Osawa, T. and M. Namiki (1981), A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves, Agric. BioI. Chem. 45(3), 735-739 https://doi.org/10.1271/bbb1961.45.735
  21. Du, Z. and W. J. Bramlage (1992), Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts, J. Agric. Food Chem. 40, 1566-1570 https://doi.org/10.1021/jf00021a018
  22. Blois, M. S. (1958), Antioxidant determinations by the use of a stable free radical, Nature 181, 1199-1202 https://doi.org/10.1038/1811199a0
  23. Tsakiris, S. and K. H. Schulpis (2002), Alanine reverses the inhibitory effect of phenylalanine on acetylcholinesterase activity, Z. Naturforsch 57c, 506-511
  24. Kasuga, A., Y. Aoyagi, and K. Sugahara (1993), Antioxidative activities of sevral mushroom extracts, Nippon Shokuhin Kogyo Gakkaishi 40(1), 56-63 https://doi.org/10.3136/nskkk1962.40.56