L-Arabinose Production from Diluted Sulfuric Acid Hydrolysis of Corn-fiber

Corn-fiber의 희석된 황산 가수분해에 의한 L-arabinose의 생산

  • Lee, Hyung-Joo (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Won-Kyu (Department of Molecular Science and Technology, Ajou University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University)
  • 이형주 (아주대학교 분자과학기술학과) ;
  • 이원규 (아주대학교 분자과학기술학과) ;
  • 유연우 (아주대학교 분자과학기술학과)
  • Published : 2007.08.30

Abstract

The demand of L-arabinose has been increased recently because of its advantages including clinical effect. L-arabinose can be produced from dilute acid hydrolysis of agricultural wastes. In this study, optimum conditions of L-arabinose production using dilute acid hydrolysis of agricultural wastes and nutshells were determined. Among the tested various agricultural wastes and nutshells, corn fiber was selected as the best raw material for the production of arabinose. The highest arabinose production was achieved an acid hydrolysis of corn fiber for 1 h at 130$^{\circ}C$ with 0.4% sulfuric acid. Above optimal conditions, it was obtained 20.1 g/L glucose, 10.1 g/L xylose, 7.8 g/L arabinose and 1.8 g/L galactose from 90 g/L of corn fiber. For the purification of arabinose, it was carried out to remove all of sugars except arabinose by the Candida tropicalis cultivation of acid hydrolyzate and an organic contaminants such as pigments by the active carbon treatment of fermentation broth. Moreover, experiments were carried out to eliminate an ions by exchange chromatography. Finally, we obtained 3.1 g of partially purified L-arabinose powder with about 40% yield by evaporation and vacuum drying.

농산 폐자원 및 견과류 껍질의 산 가수분해를 통하여 L-arabinose를 생산하기 위한 최적조건의 결정에 대한 연구를 수행하였다. 다양한 원료들을 분말로 제조하여 희석된 황산으로 가수분해 시킨 결과 corn fiber에서 arabinose가 가장 많이 생성되어, 이를 원료로 선정하였다. Corn fiber로부터 arabinose를 생성하기 위한 산 가수분해 반응의 최적조건은 0.4%의 황산으로 130$^{\circ}C$에서 60분간 처리하는 것이며, arabinose의 생성 수율은 기질의 농도가 낮을수록 증가하였으나 생성농도는 기질의 농도가 높을수록 증가하였다. 최종적으로 90 g/L의 corn fiber를 최적조건에서 산 가수분해 시킨 결과 20.1 g/L의 glucose, 10.1 g/L의 xylose, 7.8 g/L의 arabinose 및 1.8 g/L의 galactose가 생성되었다. 산 가수분해 용액을 암모니아수로 pH를 5.5로 조정하고 C. tropicalis를 접종하여 배양한 결과 7.6 g/L의 arabinose, 0.6 g/L의 xylose, 0.5 g/L의 xylitol 및 0.5 g/L의 galactose만이 존재하였다. 이는 효모의 배양에 의하여 당 혼합물로부터 L-arabinose의 비율을 증가시킬 수 있다는 것을 보여주었다. 막 여과에 의하여 고형물을 제거시킨 배양액에 activate carbon을 처리하여 organic contaminants와 색소를 제거하고 양이온과 음이온 교환 수지를 통과시켜 이온물질들을 제거시킨 후에 농축시켜 3.1 g의 L-arabinose의 분말을 얻었다.

Keywords

References

  1. Sadder, J. N. (1993), Bioconversion of forest and agricultural plant residues In Biotechnology in Ariculture, C.A. International, Walling fords, Vol. 9, 231-290
  2. Saulnier, L., C. Manx, E. Chanllaud, and J. F. Thlbanlt (1995), Cell wall polysaccharide interactions in maize bran, Curbohyr. Polym. 26, 279-287 https://doi.org/10.1016/0144-8617(95)00020-8
  3. Bungay, H. (1992), Production opportunities for biomass refining, Enz. Microb. Technol. 14, 501-507 https://doi.org/10.1016/0141-0229(92)90145-E
  4. Schneider, H. (1989), Conversion of penrose to ethanol by yeasts and fungi, CRC. Crit. Rev. Biotechnol. 9, 651-657
  5. Kusakabe, I., T. Yasui, and T. Kobayashi (1975), Some properties of arabinan degrading enzymes produced by microorganism and enzymatic preparation of arabinose from Rugal' beer pulp, Nippon Nogeikagaku Kaishi 49, 295-305 https://doi.org/10.1271/nogeikagaku1924.49.295
  6. Colquhoum, I. J., M. C. Ralet, J. F. Thibault, C. B. Faulds, and G. Williamson (1994), Structure identification of feruloylated oligosaccharldes from sugar-beer pulp by NMR spectroscopy, Cabohydr. Res. 263, 243-256 https://doi.org/10.1016/0008-6215(94)00176-6
  7. Hizukuri, S. (1999), Nutritional and physiological functions and uses of L-arabinose, J. Appl. Glycosci. 46, 159-165 https://doi.org/10.5458/jag.46.159
  8. Seri, K., N. Matsuo, K. Kawakubo, C. Xue, and S. Inoue (1996), L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppress glycemic response after sucrose ingestion in animals, Metabolism 45, 1368-1374 https://doi.org/10.1016/S0026-0495(96)90117-1
  9. Sanai, K., K. Seri, and S. Inoue (1997), Inhibition of sucrose digestion and absorption by L-arabinose in rats, J. Jpn. Soc. Nutr. Food Sci. 50, 133-137 https://doi.org/10.4327/jsnfs.50.133
  10. Inoue, S., K. Sanai, and K. Seri (2000), Effect of L-arabinose on blood glucose level after ingestion of sucrose-containing food in human, J. Jpn. Soc. Nutr. Food Sci. 53, 243-247 https://doi.org/10.4327/jsnfs.53.243
  11. Osaki, S., T. Kimura, T. Sugimoto, S. Hizukuri, and N. Iritani (2001), L-Arabinose feeding prevents increases due to dietary sucrose in lipogenic enzymes and triacylglycerol levels in rats, J. Nutr. 131, 796-799
  12. Gurgel, P. V., I. M. Mancilha, R. P. Pecanha, and J. F. M. Siqueira (1995), Xytitol recovery from fermented sugarcane bagasse hydrolyzate, Bioresource Technology 52, 219-223 https://doi.org/10.1016/0960-8524(95)00025-A
  13. Dominguez, J. M., N. Cao, C. S. Gong, and G. T. Tsao (1997), Dilute, acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast, Bioresouce Technology 61, 85-90 https://doi.org/10.1016/S0960-8524(97)84703-7
  14. Priddy, S. A. and T. R. Hanley (2003), Effect of agitation on removal of acetic acid from pretreatment hydrolysate by activated carbon, Appl. Biochem. Biotechnol. 353, 105-108