Apoptotic Cell Death by Methanol Extract of Phellinus linteus-Barley Corn in Human Leukemic U937 Cells through Induction of p21 and Bax, and Activation of Caspase-3

상황보리 추출물에 의한 p21 및 Bax 발현 증가와 caspase 활성화를 통한 U937 인체백혈병 세포의 apoptosis 유발

  • Park, Cheol (Department of Oriental Medicine, College of Oriental Medicine, Dong-Eui University) ;
  • Kim, Hyun-Joog (Department of Oriental Medicine, College of Oriental Medicine, Dong-Eui University) ;
  • Chung, Kyung-Tae (Department of Biomedical Laboratory Science, College of Natural Science, Dong-Eui University) ;
  • Yoon, Tae-Kyung (Environmental Engineering Major, College of Engineering, Dong-Eui University) ;
  • Choi, Byung-Tae (Department of Anatomy, Pusan National University Graduate School of Oriental Medicine) ;
  • Lee, Yong-Tae (Department of Oriental Medicine, College of Oriental Medicine, Dong-Eui University) ;
  • Park, Dong-Il (Department of Oriental Medicine, College of Oriental Medicine, Dong-Eui University) ;
  • Choi, Yung-Hyun (Department of Oriental Medicine, College of Oriental Medicine, Dong-Eui University)
  • 박철 (동의대학교 한의과대학 한의학과) ;
  • 김현중 (동의대학교 한의과대학 한의학과) ;
  • 정경태 (동의대학교 자연과학대학 임상병리학과) ;
  • 윤태경 (동의대학교 공과대학 환경공학과) ;
  • 최병태 (부산대학교 한의학전문대학원 해부학교실) ;
  • 이용태 (동의대학교 한의과대학 한의학과) ;
  • 박동일 (동의대학교 한의과대학 한의학과) ;
  • 최영현 (동의대학교 한의과대학 한의학과)
  • Published : 2007.10.25

Abstract

Phellinus linteus is a well-known Oriental medicinal fungus that has various biological activities, including immunomodulatory and anti-tumor activities, the mechanisms of which are poorly understood. In the present study, we investigated the anti-proliferative activity of the methanol extract of P. linteus-Barley corn (MEPLB) in human lekemic U937 cells. It was found that exposure of U937 cells to MEPLB resulted morphological change and growth inhibition in a dose-dependent manner as measured by trypan blue count and MTT assay. Upon treatment with MEPLB, U937 cells developed many of the hallmark features of apoptosis, including condensation of chromatin and an increase in the sub-G1 population suggesting that the anti-proliferative effect of MEPLB is associated with the induction of apoptosis. The anti-proliferative and apoptotic effects of MEPLB were connected with a marked induction of the pro-apoptotic Bax and cyclin-dependent kinase (Cdk) inhibitor p21 in a p53-independent manner. Additionally, MEPLB treatment significantly induced the caspase-3 activity in U937 cells. Taken together, the present results suggest that apoptotic signals evoked by MEPLB in human leukemic U937 cells may converge caspase-3 activation through an up-regulation of Bax rather than a down-regulation of Bcl-2 or Bel-xL.

Keywords

References

  1. 허준. 동의보감. 서울, 남산당, p 719, 1993
  2. 이시진. 본초강목. 서울, 고문사, p 980, 1975
  3. Yamada, S. Mycelial culture method of Phellinus linteus. Korean patent, pp 92-1194, 1994
  4. Choi, J.H., Ha, T.M., Kim, Y.H., Rho, Y.D., Studies on the main factors affecting the mycelial growth of Phellinus linteus. Kor. J. Mycol. 24: 214-222, 1996
  5. Ji, J.H., Kim, M.N., Chung, C.K., Ham, S.S., Antimutagenic and cytotoxicity effects of Phellinus linteus extracts, J. Kor. Soc. Food Sci. Nutr. 29: 322-328, 2000
  6. Jung, M.E., Ham, S.S., Nam, S.M., Kang, I.J., Kim, S.J., Chung, C.K. Biochemical and histological effects of Phellinus linteus methanol extract on liver lipid methabolism of rat fed CCl4 and high fat, J. Kor. Soc. Food Sci. Nutr. 30(2):331-337, 2001
  7. Lee, H.J., Lee, H.J., Park, J.M., Song, G.Y., Kang, K.S., Kim, S.H., Study on antitumor and immunomodulatory effects of Cambodian Phellinus linteus, Kor. J. Oriental Physiology and Pathology, 16: 332-337, 2002
  8. Kim, J.S., Kim, J.H., Lee, H.J., Khil, J.H., Kim, S.H., Kim, D.H. A study on cytokine modulating effect of three origins of Phellinus linteus, Kor. J. Oriental Physiology and Pathology 17: 898-904, 2003
  9. Choi, Y.H., Huh, M.K., Ryu, C.H., Choi, B.T., Jeong, Y.K. Induction of apoptotic cell death by mycelium extracts of Phellinus linteus in human neuroblastoma cells. Int. J. Mol. Med. 14: 227-232, 2004
  10. Kim, G.Y., Lee, J.Y., Lee, J.O., Ryu, C.H., Choi, B.T., Jeong, Y.K., Lee, K.W., Jeong, S.C., Choi, Y.H. Partial characterization and immunostimulatory effect of a novel polysaccharide-protein complex extracted from Phellinus linteus. Biosci. Biotechnol. Biochem. 70: 1218-1226, 2006 https://doi.org/10.1271/bbb.70.1218
  11. Elledge, S.J., Harper, J.W. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6: 847-852, 1994 https://doi.org/10.1016/0955-0674(94)90055-8
  12. Harper, J.W. Cyclin dependent kinase inhibitors. Cancer Surv. 29: 91-107, 1997
  13. Li, Y., Jenkins, C.W., Nichols, M.A., Xiong, Y. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene, 9: 2261-2268, 1994
  14. Taylor, W.R., Stark, G.R. Regulation of the G2/M transition by p53. Oncogene 20: 1803-1815, 2001 https://doi.org/10.1038/sj.onc.1204252
  15. Datto, M.B., Yu, Y., Wang, X.F. Functional analysis of thetransforming growth factor ${\beta}$ responsive elements in the WAF1/Cip1/p21 promoter. J. Biol. Chem., 270: 28623-28628, 1995 https://doi.org/10.1074/jbc.270.48.28623
  16. Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature, 366: 701-704, 1993 https://doi.org/10.1038/366701a0
  17. Zeng, Y.X., El-Deiry, W.S. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene, 12: 1557-1564, 1996
  18. el-Deiry, W.S., Harper, J.W., O'Connor, P.M., Velculescu, V.E., Canman, C.E., Jackman, J., Pietenpol, J.A., Burrell, M., Hill, D.E., Wang, Y., Wiman, K.G., Mercer, W.E., Kastan, M.B., Kohn, K.W., Elledge, S.J., Kinzler, K.W., Vogelstain, B. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res, 54: 1169-1174, 1994
  19. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B., Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391: 496-499, 1998 https://doi.org/10.1038/35160
  20. Osford, S.M., Dallman, C.L., Johnson, P.W., Ganesan, A., Packham, G. Current strategies to target the anti-apoptotic Bcl-2 protein in cancer cells. Curr. Med. Chem. 11: 1031-1039, 2004 https://doi.org/10.2174/0929867043455486
  21. Lowe, S.W., Ruley, H.E., Jacks, T., Housman, D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell, 74: 957-967, 1993 https://doi.org/10.1016/0092-8674(93)90719-7
  22. Donovan, M., Cotter, T.G. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta. 1644: 133-147, 2004 https://doi.org/10.1016/j.bbamcr.2003.08.011
  23. Holcik, M., Gibson, H., Korneluk, R.G. XIAP: apoptotic brake and promising therapeutic target. Apoptosis, 6: 253-261, 2001 https://doi.org/10.1023/A:1011379307472
  24. Cheng, J.Q., Jiang, X., Fraser, M., Li, M., Dan, H.C., Sun, M., Tsang, B.K. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist. Updat. 5: 131-146, 2002 https://doi.org/10.1016/S1368-7646(02)00003-1
  25. Salvesen, G.S., Duckett, C.S. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3: 401-410, 2002 https://doi.org/10.1038/nrm830
  26. Nagata, S. Apoptosis by death factor. Cell, 88: 355-365, 1997 https://doi.org/10.1016/S0092-8674(00)81874-7
  27. Allen, R.T., Cluck, M.W., Agrawal, D.K. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol. Life Sci. 54: 427-445, 1998 https://doi.org/10.1007/s000180050171
  28. Rao, L., White, E. Bcl-2 and the ICE family of apoptotic regulators: making a connection. Curr. Opin. Genet. Dev. 7: 52-58, 1997 https://doi.org/10.1016/S0959-437X(97)80109-8
  29. Vegran, F., Boidot, R., Oudin, C., Riedinger, J.M., Lizard-Nacol, S. Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance Bull Cancer, 92: 219-226, 2005
  30. Giercksky, K.E. COX-2 inhibition and prevention of cancer. Best Pract. Res. Clin. Gastroenterol, 15: 821-833, 2001 https://doi.org/10.1053/bega.2001.0237
  31. Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-${\kappa}B$ activation. Mutat. Res. 1: 243-268, 2001
  32. Poole, J.C., Andrews, L.G., Tollefsbol, T.O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene, 269: 1-12, 2001 https://doi.org/10.1016/S0378-1119(01)00440-1
  33. Kyo, S., Inoue, M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy. Oncogene, 21: 688-697, 2002 https://doi.org/10.1038/sj.onc.1205163