References
- M. Vastram Naik et al., 'Blind adaptive recognition of different QPSK modulated signals for software defined radio applica tion,' '06 COMSWARE, pp. 1-6, Jan. 2006
- Octavia A. Dobre et al., 'A survey of automatic modulation classification Techniques: classi cal approaches and new trends,' IEE Proc. Communication, to be published in 2006
- Bin Le et al, 'Modulation identification using neural network for cognitive radios,' SDR forum technical conference, 2005
- E.E. Azzouz, and A.K.Nandi, 'Procedure for automatic recog nition of analogue and digital modulations,' IEE proceedings Communications, vol. 143, no.5, pp. 259-266, oct. 1996 https://doi.org/10.1049/ip-com:19960752
- A.K. Nandi and E.E. Azzouz, 'Algorithm for automatic modul ation recognition of communica tion signals,' IEEE Trans. Communications, vol. 46, no. 4, pp.431-436, April 1998 https://doi.org/10.1109/26.664294
- Ilan Druckmann et al., 'Automatic modulation type recog nition,' IEEE Canadian Conf. on Electrical and Computer Engineering, pp.65-68, May 1998
- Octavia A. Dobre et al., 'The classification of joint analog and digital modulations,' IEEE MILCOM '05, pp. 3010-3015, Oct. 2005
- 서승한, 윤여종, 진영환, 서영주, 임선민, 안재민, 은창수, 장원, 나선필, '아날로그 및 디지털 변조 신호의 자동인식,' 한국통신학회논문지, Vol.30, No.1C, pp.73-81, 2005
- Roongroj Nopsuwanchai, and Al ain Biem, 'Prototype-based minimum error classifier for handwritten digits recognition,' IEEE ICASSP'04, pp.845-848, May 2004
- L. Zhang, N. Fujiwara, K. Muramatsu, M. Daigo and S. Furumi, 'Land cover classification based on the universal pattern decomposition method,' Int'l Symp. on Remote Sensing of Environment, 2005
- Namjin Kim, Nasser Kehta rnavaz, Mark B. Yeary and Steve Thornton, 'DSP-based hirerarchical neural network modulation signal classification,' IEEE Trans. Neural Networks, vol.14, no.5, pp. 1065-1071, Sept. 2003 https://doi.org/10.1109/TNN.2003.816037
- Stefan C. Kremer and Joanne Sheils, 'A testbed for automatic modulation recognition using artificial neural networks,' IEEE Canadian Conf. on Electrical and Computer Engi neering, pp.67-70, May 199
- 신용조, 진용옥, '신경망을 이용한 디지털 변조 방식의 자동식별,' 한국통신학회논문지, Vol.25, No.10B, pp1769-1776, 2000
- Steve R. Gunn, Support Vector Machine for Classification and Regression, Technical Report, Univ. of Southampton, May 1998
- Hussam Mustafa and Milos Doroslovacki, 'Digital modula tion recognition using support vector machine classifier,' IEEE Conf. on Signals, Systems and Computers, pp.2238-2242, Nov. 2004
- Zhilu Wu et al., 'Automatic digital modulation recognition based on supp ort vector machine,' IEEE Conf. on Neural Networks and Brain, pp. 1025-1028, Oct. 2005
- Wu Dan, Gu Xuemai, and Guo Qing, 'A new scheme of automatic modulation classifica tion using wavelet and WSVM,' 2nd Int'l Conf. on Mobile Technology, Applications and Systems, Nov. 2004
- B.Q.Hu, J. Yang, and J.L.He, 'A multiclassification model based on FSVMs,' NAFIPS '05, pp. 205-209, June 2005
- Anil K. Jain et al., 'Statistical pattern recognition: a review,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4-37, Jan. 2000 https://doi.org/10.1109/34.824819
- Robert W. Jones, Spectrum Monitoring Handbook, ITU, 3rd ed, 1995, pp.222-237
- Andrew Webb, Statistical Pattern Recognition, 2nd ed., 2002, John Wiley & Sons, Ltd., pp.144-168