Effects of Inoculum Level and Pressure Pulse on the Inactivation of Clostridium sporogenes Spores by Pressure-Assisted Thermal Processing

  • Ahn, Ju-Hee (Division of Biomaterials Engineering, School of Bioscience and Biotechnology, Kangwon National University) ;
  • Balasubramaniam, V.M. (Department of Food Science and Technology, The Ohio State University)
  • Published : 2007.04.30

Abstract

The effects of initial concentration and pulsed pressurization on the inactivation of Clostridium sporogenes spores suspended in deionized water were determined during thermal processing $(TP;\;105^{\circ}C,\;0.1MPa)$ and pressure-assisted thermal processing $(PATP;\;105^{\circ}C\;and\;700MPa)$ treatments for 40 min and 5min holding times, respectively. Different inoculum levels $(10^4,\;10^6\;and\;10^8CFU/ml)$ of C. sporogenes spores suspended in deionized water were treated at $105^{\circ}C$ under 700MPa with single, double, and triple pulses. Thermally treated samples served as control. No statistical significances (p>0.05) were observed among all different inoculum levels during the thermal treatment, whereas the inactivation rates $(k_1\;and\;k_2)$ were decreased with increasing the initial concentrations of C. sporogenes spores during the PATP treatments. Double- and triple-pulsed pressurization reduced more effectively the number of C. sporogenes spores than single-pulse pressurization. The study shows that the spore clumps formed during the PATP may lead to an increase in pressure-thermal resistance, and multiple-pulsed pressurization can be more effective in inactivating bacterial spores. The results provide an interesting insight on the spore inactivation mechanisms with regard to inoculum level and pulsed pressurization.

Keywords

References

  1. Baranyi, J., A. Jones, C. Walker, A. Kaloti, T. P. Robinson, and B. M. MacKey. 1996. A combined model for growth and subsequent thermal inactivation of Brochothrix thermosphacta. Appl. Environ. Microbiol. 62: 1029-1035
  2. Busta, F. F., T. V. Suslow, M. E. Parish, L. R. Beuchat, J. M. Farber, E. H. Garrett, and L. J. Harris. 2003. The use of indicators and surrogate microorganisms for the evaluation of pathogens in fresh and fresh-cut produce. Comp. Rev. Food Sci. Food Safe. 2: 179-185 https://doi.org/10.1111/j.1541-4337.2003.tb00035.x
  3. Buzrul, S. and H. Alpas. 2004. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: A preliminary study. FEMS Microbiol. Lett. 238: 29-36
  4. Chen, H. and D. G Hoover. 2003. Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerging Tech. 4: 25-34 https://doi.org/10.1016/S1466-8564(02)00083-8
  5. Chen, H. and D. G. Hoover. 2003. Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. Int. J. Food Microbiol. 87: 161-171 https://doi.org/10.1016/S0168-1605(03)00064-3
  6. Chen, H., R. D. Joerger, D. H. Kingsley, and D. G. Hoover. 2004. Pressure inactivation kinetics of phage $\lambda$ cl 857. J. Food Prot. 67: 505-511 https://doi.org/10.4315/0362-028X-67.3.505
  7. Clouston, J. G. and P. A. Wills. 1969. Initiation of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. J. Bacteriol. 97: 684-690
  8. Clouston, J. G. and P. A. Wills. 1970. Kinetics of initiation of germination of Bacillus pumilus spores by hydrostatic pressure. J. Bacteriol. 103: 140-143
  9. Corradini, M. G. and M. Peleg. 2004. A model of non-isothermal degradation of nutrients, pigments and enzymes. J. Sci. Food Agric. 84: 217 -226 https://doi.org/10.1002/jsfa.1647
  10. Dixit, A., I. S. Alam, R. K. Dhaked, and L. Singh. 2005. Sporulation and heat resistance of spores from a Clostridium sp. RKD. J. Food Sci. 70: M367-M373 https://doi.org/10.1111/j.1365-2621.2005.tb11482.x
  11. Elez-Martinez, P., J. Escola-Hernandez, R. C. Soliva-Fortuny, and O. Martin-Belloso, 2005. Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiol. 22: 311-319 https://doi.org/10.1016/j.fm.2004.09.005
  12. Fleischman, G J., S. Ravishankar, and V. M. Balasubramaniam. 2004. The inactivation of Listeria monocytogenes by pulsed electric field (PEF) treatment in a static chamber. Food Microbiol. 21: 91-95 https://doi.org/10.1016/S0740-0020(03)00015-7
  13. Fugikawa, H. and K. Itoh. 1996. Tailing of thermal inactivation curve of Aspergillus niger spores. Appl. Environ. Microbiol. 62: 3745-3749
  14. Furukawa, S., A. Nakahara, and I. Hayakawa. 2000. Effect of reciprocal pressurization on germination and killing of bacterial spores. Int. J. Food Sci. Technol. 35: 529-532 https://doi.org/10.1046/j.1365-2621.2000.00416.x
  15. Furukawa, S., N. Narisawa, T. Watanabe, T. Kawarai, K. Myozen, S. Okazaki, H. Ogihara, and M. Yamasaki. 2005. Formation of spore clumps during heat treatment increases the heat resistance of bacterial spores. Int. J. Food Microbiol. 102: 107-111 https://doi.org/10.1016/j.ijfoodmicro.2004.12.004
  16. Furukawa, S., S. Noma, M. Shimoda, and I. Hayakawa. 2002. Effect of initial concentration of bacterial suspensions on their inactivation by high hydrostatic pressure. Int. J. Food Sci. Technol. 37: 573-577 https://doi.org/10.1046/j.1365-2621.2002.00586.x
  17. Furukawa, S., S. Noma, S. Yoshikawa, H. Furuya, M. Shimoda, and I. Hayakawa. 2001. Effect of filtration of bacterial suspensions on the inactivation ratio in hydrostatic pressure treatment. J. Food Eng. 50: 59-61 https://doi.org/10.1016/S0260-8774(00)00188-6
  18. Furukawa, S., M. Shimoda, and I. Hayakawa. 2003. Mechanism of the inactivation of bacterial spores by reciprocal pressurization treatment. J. Appl. Microbiol. 94: 836-841 https://doi.org/10.1046/j.1365-2672.2003.01913.x
  19. Guerrero-Beltran, J. A. and G. V. Barbosa-Canovas, 2004. Advantages and limitation on processing foods by UV light. Food Sci. Tech. Inst. 10: 137-146 https://doi.org/10.1177/1082013204044359
  20. Hauben, K. J. A., K. Bernaerts, and C. W. Michiels. 1998. Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. J. Appl. Microbiol. 85: 678-684 https://doi.org/10.1111/j.1365-2672.1998.00577.x
  21. Hayakawa, I., T. Kanno, K. Yoshiyama, and Y. Fujio. 1994. Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. J. Food Sci. 59: 164-167 https://doi.org/10.1111/j.1365-2621.1994.tb06924.x
  22. Leuschner, R. G. K., A. C. Weaver, and P. J. Lillford. 1999. Rapid particle size distribution analysis of Bacillus spore suspensions. Coll. Surf. B 13: 47-57 https://doi.org/10.1016/S0927-7765(98)00112-X
  23. Marechal, P. A., I. M. de Marnanon, I. Poirier, and P. Gervais. 1999. The importance of the kinetics of application of physical stresses on the viability of microorganisms: Significance for minimal food processing. Trends Food Sci. Technol. 10: 15-20 https://doi.org/10.1016/S0924-2244(99)00012-6
  24. Margosch, D., M. G. Gazle, M. A. Ehrmann, and R. F. Vogel, 2004. Pressure inactivation of Bacillus endospores. Appl. Environ. Microbiol. 70: 7321-7328 https://doi.org/10.1128/AEM.70.12.7321-7328.2004
  25. Meyer, R. S., K. L. Cooper, D. Knorr, and H. L. M. Lelieveld. 2000. High-pressure sterilization of foods. Food Technol. 54: 67-72
  26. Norvak, J. S. and J. T. C. Yuan. 2004. The fate of Clostridium perfringens spores exposed to ozone and/or mild heat pretreatment on beef surfaces followed by modified atmosphere packaging. Food Microbiol. 21: 667-673 https://doi.org/10.1016/j.fm.2004.03.003
  27. Oh, S. and M.-J. Moon. 2003. Inactivation of Bacillus cereus spores by high hydrostatic pressure at different temperatures. J. Food Prot. 66: 599-603 https://doi.org/10.4315/0362-028X-66.4.599
  28. Rajan, S., J. Ahn, V. M. Balasubramaniam, and A. E. Yousef. 2006. Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. J. Food Prot. 69: 853-860 https://doi.org/10.4315/0362-028X-69.4.853
  29. Rajan, S., V. M. Balasubramaniam, and A. E. Yousef. 2006. Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. Lebensmittel-Wissenschaft Technologie 39: 844-851 https://doi.org/10.1016/j.lwt.2005.06.008
  30. Reddy, N. R., H. M. Solomon, R. C. Tetzloff, and E. J. Rhodehamel. 2003. Inactivation of Clostridium botulinum Type A spores by high-pressure processing at elevated temperature. J. Food Prot. 66: 1402-1407 https://doi.org/10.4315/0362-028X-66.8.1402
  31. Rodriguez, A. C., J. W. Larkin, J. Dunn, E. Patazca, N. R. Reddy, R. Alvarez-Medina, and G. J. Fleischman. 2004. Model of the inactivation of bacterial spores by moist heat and high pressure. J. Food Sci. 69: 367-373 https://doi.org/10.1111/j.1365-2621.2004.tb09897.x
  32. Ross, A. I. V., M. W. Griffiths, G. S. Mittal, and H. C. Deeth. 2003. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89: 125-138 https://doi.org/10.1016/S0168-1605(03)00161-2
  33. Sale, A. J. H., G. W. Gould, and W. A. Hamilton. 1970. Inactivation of bacterial spores by high hydrostatic pressure. J. Gen. Microbiol. 60: 323-334 https://doi.org/10.1099/00221287-60-3-323
  34. San Martin, M. F., G. V. Barbosa-Canovas, and B. G. Swanson. 2002. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 46: 627-645
  35. Whiting, R. C., S. Sackitey, S. Calderone, Y. K. Morely, and J. G. Phillips. 1996. Model for the survival of Staphylococcus aureus in nongrowth environments. Int. J. Food Microbiol. 31: 231-243 https://doi.org/10.1016/0168-1605(96)01002-1
  36. Wuytack, E. Y., S. Boven, and C. W. Michiels. 1998. Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressure. Appl. Environ. Microbiol. 64: 3220-3224
  37. Wuytack, E. Y., J. Soons, F. Poschet, and C. W. Michiels. 2000. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 66: 257-261 https://doi.org/10.1128/AEM.66.1.257-261.2000
  38. Xiong, R., G. Xie, A. E. Edmondson, and M. A. Sheard. 1999. A mathematical model for bacterial inactivation. Int. J. Food Microbiol. 46: 45-55 https://doi.org/10.1016/S0168-1605(98)00172-X