• Title/Summary/Keyword: spore inactivation

Search Result 22, Processing Time 0.029 seconds

Effects of Inoculum Level and Pressure Pulse on the Inactivation of Clostridium sporogenes Spores by Pressure-Assisted Thermal Processing

  • Ahn, Ju-Hee;Balasubramaniam, V.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.616-623
    • /
    • 2007
  • The effects of initial concentration and pulsed pressurization on the inactivation of Clostridium sporogenes spores suspended in deionized water were determined during thermal processing $(TP;\;105^{\circ}C,\;0.1MPa)$ and pressure-assisted thermal processing $(PATP;\;105^{\circ}C\;and\;700MPa)$ treatments for 40 min and 5min holding times, respectively. Different inoculum levels $(10^4,\;10^6\;and\;10^8CFU/ml)$ of C. sporogenes spores suspended in deionized water were treated at $105^{\circ}C$ under 700MPa with single, double, and triple pulses. Thermally treated samples served as control. No statistical significances (p>0.05) were observed among all different inoculum levels during the thermal treatment, whereas the inactivation rates $(k_1\;and\;k_2)$ were decreased with increasing the initial concentrations of C. sporogenes spores during the PATP treatments. Double- and triple-pulsed pressurization reduced more effectively the number of C. sporogenes spores than single-pulse pressurization. The study shows that the spore clumps formed during the PATP may lead to an increase in pressure-thermal resistance, and multiple-pulsed pressurization can be more effective in inactivating bacterial spores. The results provide an interesting insight on the spore inactivation mechanisms with regard to inoculum level and pulsed pressurization.

Effect of Commercial Antimicrobials in Combination with Heat Treatment on Inactivation of Bacillus cereus Spore

  • Shin, Hye-Won;Lim, Yoon-Hee;Lee, Jong-Kyung;Kim, Yun-Ji;Oh, Se-Wook;Shin, Chul-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.603-607
    • /
    • 2008
  • Thirteen commercial antimicrobial products were examined to assess the sporicidal activity against Bacillus cereus spores at room temperature, 60 and $85^{\circ}C$. Neither the antimicrobials showed detectable antimicrobial activity against the B. cereus spores nor induced spore germination after the treatment at 0.5 or 1.0%(w/v, v/v) commercial antimicrobial agents at room temperature for 0.5 to 4 hr. However, when the antimicrobials such as chitosan, lactic acid, fermented pollen, grapefruit extract were applied with heat at $85^{\circ}C$ for 30 min, more than 1 log CFU/mL spores were additionally inactivated compared to only heat treatment without antimicrobials. Imposition of $60^{\circ}C$ to B. cereus spores with the higher concentration of 5.0%(v/v) lactic acid or 2.5%(w/v) thiamine dilaurylsulfate for the longer time incubation of 24 hr resulted in 3 log CFU/mL spore inactivation. This work showed that low concentrations of commercial antimicrobials by themselves did not inactivate B. cereus spores. However, when physical processes such as heat were combined together, antimicrobials showed a synergistic effect against B. cereus spores.

Physiological Responses of Bacillus amyloliquefaciens Spores to High Pressure

  • Ahn, Ju-Hee;Balasubramaniam, V.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.524-529
    • /
    • 2007
  • Pressure inactivation behavior of Bacillus amyloliquefaciens spores was investigated in deionized water. The spores of B. amyloliquefaciens were subjected to $105^{\circ}C$ and 700 MPa. The magnitude of the decrease in viability after pressure treatment was similar to that after pressure treatment followed by heat shock. The increase of dipicolinic acid (DPA) release was correlated with the spore inactivation, and the hydrophobicity did not significantly change during the pressure-assisted thermal processing (PATP). Lag phase duration increased with increasing pressure process time. The mechanisms of spore germination and inactivation during the PATP were related to a complex physiological process.

Application of UV Technology for Surface Disinfection (표면 살균을 위한 UV 기술의 적용)

  • Cho, Min;Jeong, Woo-Dong;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1020-1026
    • /
    • 2007
  • The control of pathogenic microorganisms is important issue in human environments, especially in surface area. However, surface disinfection has not been fully researched. In this study, the surface disinfection under UV irradiation was performed to investigate the quantitative kinetics for Bacillus subtilis spore inactivation in several experimental conditions, such as light intensity, temperature and surface roughness. This study reports that UV light would apparently inactivates the microorganisms and the required IT value for 2 log (99%) Bacillus subtilis spore inactivation was found to be 14.5 $mJ/cm^2$ in plain surface, as predicted by the Delayed Chick-Watson model. When UV was irradiated, there were no significant temperature effects. However, the experimental result shows that the more increased IT values are required at larger surface roughness.

Application of Gaseous Ozone for Cleaning Biological Weapon Agent Contaminated Building (생물테러시 실내제독을 위한 효율적인 오존가스의 적용 방법)

  • Yoon, Je-Yong;Jeong, Woo-Dong;Mun, Sung-Min;Cho, Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • This study attempted to develop the technology by gaseous ozone for decontaminating building affected by a model of biological weapon agent(Bacillus subtilis spores) instead of Bacillus anthracis spore. The use of ozone is attractive method from a practical point of view of decontamination procedure since it has strong oxidation power but no residue after application. We examined the disinfection efficiency of gaseous ozone to Bacillus subtilis spores which suspension was sprayed on different material surfaces and dried. Three different types of gaseous ozone was applied : dry ozone, dry ozone with humidified air, and water bubbled wet ozone. Dry ozone(1500ppm) failed to achieve any significant inactivation for 2hrs. However, six log reduction of B. subtilis spore was achieved within 30min by 1500ppm of water bubbled wet ozone. This result shows the noticeable inactivation efficiency by gaseous ozone compared with previous studies. Good performance by wet ozone was also found for military material surface.(i.e. : gas mask hood, protective garments, army peinted metal surface).

Evaluation of Disinfection Characteristics of Ozone, UV Processes for Bacillus Subtilis Spores Inactivation (Bacillus Subtilis Spores 불활성화 실험을 통한 오존, UV 공정의 소독 특성 평가)

  • Jung, Yeon Jung;Oh, Byung Soo;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.672-677
    • /
    • 2006
  • Ozone/UV combined process is an effective technique to enhance generation of OH radical which is non-selective and powerful oxidant. The objective of this study is to evaluate the inactivation rates of B. subtilis spores by three candidate processes (ozone alone, UV alone, ozone/UV combined processes) at 4 and $20^{\circ}$ and to investigate the effects of OH radical on inactivation of B. subtilis spores. On the UV alone process, required UV dosages for lag phase and 3-log inactivation of B. subtilis spores were determined as $8.9mJ/cm^2$ and $47mJ/cm^2$. However, the inactivation of B. subtilis spores didn't occured beyond 4.5-log inactivation despite increasing UV dose. The inactivation of B. subtilis spores by ozone alone and ozone/UV combined process was investigated with ozone CT (Concentration of disinfectant ${\times}$ Contact time) concept. As a result, inactivation of B. subtilis spores by ozone/UV combined process was faster than by ozone alone, and especially $CT_{lag}$ value B. subtilis spores in the presence and absence of t-BuOH, OH radical scavenger, was investigated to evaluate effects of OH radical formed during ozone/UV combined process. We found that OH radical plays important roles on inactivation of B. subtilis spores.

Synergistic Effect of Grapefruit Seed Extract, EDTA and Heat on Inactivation of Bacillus cereus Spore (자몽종자추출물, EDTA와 열 병행에 의한 Bacillus cereus 포자 불활성화 상승효과)

  • Yang, Seung-Kuk;Kim, Jung-Jee;Kim, Seok-Joong;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1469-1473
    • /
    • 2011
  • The efficacy of antimicrobial agents and heat treatments on spore inactivation was investigated. Grapefruit seed extract (GFE) and ethylenediaminetetraacetic acid (EDTA) were used and as antimicrobial agents, and heat treatments were conducted at $70^{\circ}C$, $80^{\circ}C$, and $90^{\circ}C$ for 30 minutes. Heat treatments at $90^{\circ}C$ were the most effective on spore inactivation as a single treatment and caused a 2.3 log reduction. When combined with a single treatment to discover synergistic effects, 1% GFE with $80^{\circ}C$ heat treatments and 0.5 mM EDTA with $80^{\circ}C$ heat treatments resulted in 2.1 log and 3.2 log reductions, respectively, though they did not show reductions at each single treatment (GFE 1% (v/v), EDTA 0.5 mM, $80^{\circ}C$). So it was concluded that by combining GFE, EDTA in low concentration treatment, and heat treatment, B. cereus spores can be effectively inactivated.

The Possible Role of SCO3388, a tmrB-like Gene of Streptomyces coelicolor, in Germination and Stress Survival of Spores

  • Kwon, So-Yeon;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • The SCO3388 gene from Streptomyces coelicolor is homologous to tmrB, the tunicamycin resistance gene of Bacillus subtilis. The SCO3388-inactivation strain (SY-tbl-1) was generated by replacing SCO3388 with thiostrepton resistance gene. Spores of S. coelicolor derivatives were prepared on mannitol-soy flour (MS) agar on which SY-tbl-1 displayed no significant defect in growth and development. When plated on R4 agar, spores of SYtbl-1 displayed retardation in growth and sporulation, whereas its mycelium gave rise to normal growth. Thus, SCO3388 is suggested to be involved in the dormant spore germination. Expression of SCO3388 under the ermE1 promoter restored but only partially the ability to sporulate in SY-tbl-1. Neither SY-tbl-1 nor SY-tbl-1/ermE1p-SCO3388 showed a difference in tunicamycin resistance to the wild type whereas, interestingly, the introduction of ermE1p-SCO3388 dramatically enhanced spore survival to heat and detergent treatments, suggesting that SCO3388 might play a role in the maintenance of spore cell wall integrity.

Inactivation of Bacterial Spores by High Pressure and Food Additive Combination (초고압과 식품첨가물 병용을 이용한 세균 포자의 살균)

  • Chung, Yoon-Kyung
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1094-1099
    • /
    • 2011
  • Antimicrobial efficacy of high pressure (HP) can be enhanced by the application of additional hurdles. The objective of this study was to assess the enhancement in pressure lethality by tert-butylhydroquinone (TBHQ) treatment, against bacterial spores that are considered significant in the food industry. Spores of Clostridium sporogenes, Bacillus cereus and B. subtilis were prepared. Spore suspensions containing TBHQ (200 ppm, dissolved in dimethyl sulfoxide, DMSO) were pressurized at 650 or 700 MPa at 54-72$^{\circ}C$ for 5 min. Inactivation of bacterial spores resulted only with HP treatment. The population of B. subtilis spores was more inactivated by HP than those of B. cereus and C. sporogenes spores. Inactivation of C. sporogenes spores using pressure was more affected by the germinated population, compared to Bacillus spores. The inactivation of Bacillus spores increased when pressurized at 70$^{\circ}C$, compared to 54$^{\circ}C$. On the other hand, the degree of germination-induced lethality for Bacillus spores decreased at 70$^{\circ}C$. When spores were treated with a combination of DMSO-HP and TBHQ-HP, these treatments seemed to protect the spores against HP, especially at 54$^{\circ}C$. Further mechanistic studies involved in inducing germination by HP and using a subsequent sporicidal agent will be needed for a better understanding of bacterial spore inactivation.

Inactivation of Spore-Forming Bacteria by Gamma Irradiation (감마선 조사에 의한 유포자 세균의 불활성화)

  • 변명우;권오진;육홍선
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.3
    • /
    • pp.197-201
    • /
    • 1996
  • D10 values obtained for radiation alone in Bacillus subtilis and Clostridium perfrigenes were 0.35-0.48 kGy in vegetative cells, and 2~2.08 kGy in spores, respectively. Irradiation dose of 24 kGy completely inhibited spores. In the case of heat treatment, D50, 60 values ranged from 10 to 14 minutes in vegetative cells, and D70, 80, 90 values ranged from 10 to 140 minutes in spores. In the case of combined treatment with heat and radiation, D10 values ranged form 1 to 1.25 kGy in vegetative cells, and from 3.42 to 3.61 kGy in spores. Thus, resistance of cells to gamma radiation did not seem to be influences by pre-heating.

  • PDF