DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of the Rod Opsin Gene in Olive Flounder Paralichthys olivaceus

  • Kim, Jong-Myoung (Department of Aquaculture, Pukyong National University) ;
  • Kim, Sung-Wan (Department of Aquaculture, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology and Bioengineering, Pukyong National University)
  • Published : 2007.03.31

Abstract

Rhodopsin, a dim-light receptor, is a model system for the study of G protein-coupled receptors that transduce extracellular signals into cells. To study the molecular mechanisms of visual systems in fish, the rod opsin gene of olive flounder Paralichthys olivaceus was characterized. The full-length P. olivaceus opsin gene was obtained by PCR amplification of genomic DNA, as well as cDNA synthesis. A comparison of clones obtained from both methods indicated that the olive flounder rod opsin gene lacks introns. Sequence analysis of the opsin gene indicated that it contains a 1,056-bp open reading frame encoding 352 amino acids. The deduced amino acid sequence contains features of typical rod opsins, such as sites for Schiff's base formation (K296) and its counterion (E113), disulfide formation (C110 and C187), and palmitoylation (C322 and C323). An opsin sequence alignment showed the highest similarity between P. olivaceus and Solea solea (95.1%), followed by Hippoglossus hippoglossus (94.5%). An opsin phylogenetic tree revealed a close relationship between olive flounder and teleost rod opsins.

Keywords

References

  1. Archer, S., A.J. Hope and J.C. Partridge. 1995. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc. Roy. Soc. Lond. B262, 289-295
  2. Bellingham, J., A.G. Morris and D.M. Hunt. 1998. The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning. J. Exp. BioI. 201, 2299-2306
  3. Franke, R.R., B. Konig, T.P. Sakmar, H.G. Khorana and K.P. Hofmann. 1990. Rhodopsin mutants that bind but fail to activate transducin. Science, 250, 123-125
  4. Helvik, J.V., O. Drivenes, T.H. Naess, A. Fjose and H.C. Seo. 2001. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Vis. Neurosci. 18, 767-780 https://doi.org/10.1017/S095252380118510X
  5. Hope, A.J., J.C. Partridge and P.K. Hayes. 1998. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc. Roy. Soc. Lond. B265, 869-874
  6. Hunt, D.M., K.S. Dulai, J.C. Partridge, P. Cottrill and J.K. Bowmaker. 2001. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J. Exp. BioI. 20, 4, 3333-3344
  7. Imai, H., D. Kojima, T. Oura, S. Tachibanaki, A. Terakita and Y. Shichida. 1997. Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc. Natl. Acad. Sci. USA, 94, 2322-2326
  8. Inoue, H., H. Nojima and H. Okayama. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23-28 https://doi.org/10.1016/0378-1119(90)90336-P
  9. Karnik, S.S., T.P. Sakmar, H.B. Chen and H.G. Khorana. 1988. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 85, 8459-8463
  10. Kaushal, S., K. Ridge and H.G. Khorana. 1994. Structure and function in rhodopsin: The role of asparagine-linked glycosylation. Proc. Natl. Acad. Sci. USA, 91, 4024-4028
  11. Khorana, H.G. 2000. Molecular biology of light transduction by the mammalian photoreceptor, rhodopsin. J. Biomol. Struct. Dyn., 11, 1-6
  12. Khorana, H.G., P.J. Reeves and J.M. Kim. 2002. Structure and mechanism in G protein-coupled receptors. Pharmaceut. Rev., 9, 287-294
  13. Kim, J.M., J. Hwa, P. Garriga, P.J. Reeves, U.L. Raj-Bhandary and H.G. Khorana. 2005. Light-driven activation of beta-2 adrenergic receptor signaling by a chimeric rhodopsin containing the beta-2 adrenergic receptor cytoplasmic loops. Biochemistry, 44, 2284-2292 https://doi.org/10.1021/bi048328i
  14. Matsumoto, Y., Y.S. Fukamachi, H. Mitani and S. Kawamura. 2006. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene, 371, 268-278 https://doi.org/10.1016/j.gene.2005.12.005
  15. Minamoto, T. and I. Shimizu. 2003. Molecular cloning and characterization of rhodopsin in a teleost (Plecoglossus altivelis, Osmeridae). Compo Biochem. PhysioI., 34, 559-570
  16. Nakayama, T.A. and H.G. Khorana. 1991. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. BioI. Chem., 266, 4269-4275
  17. O'Brien, J., H. Ripps and M.R. Al-Ubaidi. 1997. Molecular cloning of a rod opsin cDNA from the skate retina. Gene, 193, 141-150 https://doi.org/10.1016/S0378-1119(97)00079-6
  18. Ohguro, H., R.S. Johnson, L.H. Ericsson, K.A. Walsh and K. Palczewski. 1994. Control of rhodopsin multiple phosphorylation. Biochemistry, 33, 1023-1028 https://doi.org/10.1021/bi00170a022
  19. Oprian, D.D., R.S. Molday, R.J. Kaufman and H.G. Khorana. 1987. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. USA, 84, 8874-8878
  20. Ovchinnikov, Y.A., N.G. Abdulaev and A.S. Bogachuk. 1988. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett., 230, 1-5 https://doi.org/10.1016/0014-5793(88)80628-8
  21. Philp, A.R., J. Bellingham, J.M. Garcia-Fernandez and R.G. Forster. 2000. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett., 468, 181-188 https://doi.org/10.1016/S0014-5793(00)01217-5
  22. Sakmar, T.P., R.R. Franke and H.G. Khorana. 1989. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 86, 8309-8313
  23. Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor La-boratory Press, Plainview, NY
  24. Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progresssive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22, 4673-468 https://doi.org/10.1093/nar/22.22.4673
  25. Wang, J. K., J. H. McDowell and P.A. Hargrave. 1980. Site of attachment of 11-cis-retinal in bovine rhodopsin. Mol. BioI. Evol., 12, 53-61
  26. Yokoyama, S. 1995. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol. BioI. Evol., 12, 53-61 https://doi.org/10.1093/oxfordjournals.molbev.a040190
  27. Yokoyama, S. and F.B. Radlwimmer. 1998. The 'Five Sites' rule and the evolution of red and green color vision in mammals. Mol. Biol. Evol., 15, 560-567 https://doi.org/10.1093/oxfordjournals.molbev.a025956

Cited by

  1. Differential expression of rhodopsin and Exo-rhodopsin genes in the retina and pineal gland of olive flounder (Paralichthys olivaceus) vol.40, pp.3, 2007, https://doi.org/10.1080/09712119.2012.662894