References
- Archer, S., A.J. Hope and J.C. Partridge. 1995. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc. Roy. Soc. Lond. B262, 289-295
- Bellingham, J., A.G. Morris and D.M. Hunt. 1998. The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning. J. Exp. BioI. 201, 2299-2306
- Franke, R.R., B. Konig, T.P. Sakmar, H.G. Khorana and K.P. Hofmann. 1990. Rhodopsin mutants that bind but fail to activate transducin. Science, 250, 123-125
- Helvik, J.V., O. Drivenes, T.H. Naess, A. Fjose and H.C. Seo. 2001. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Vis. Neurosci. 18, 767-780 https://doi.org/10.1017/S095252380118510X
- Hope, A.J., J.C. Partridge and P.K. Hayes. 1998. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc. Roy. Soc. Lond. B265, 869-874
- Hunt, D.M., K.S. Dulai, J.C. Partridge, P. Cottrill and J.K. Bowmaker. 2001. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J. Exp. BioI. 20, 4, 3333-3344
- Imai, H., D. Kojima, T. Oura, S. Tachibanaki, A. Terakita and Y. Shichida. 1997. Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc. Natl. Acad. Sci. USA, 94, 2322-2326
- Inoue, H., H. Nojima and H. Okayama. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23-28 https://doi.org/10.1016/0378-1119(90)90336-P
- Karnik, S.S., T.P. Sakmar, H.B. Chen and H.G. Khorana. 1988. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 85, 8459-8463
- Kaushal, S., K. Ridge and H.G. Khorana. 1994. Structure and function in rhodopsin: The role of asparagine-linked glycosylation. Proc. Natl. Acad. Sci. USA, 91, 4024-4028
- Khorana, H.G. 2000. Molecular biology of light transduction by the mammalian photoreceptor, rhodopsin. J. Biomol. Struct. Dyn., 11, 1-6
- Khorana, H.G., P.J. Reeves and J.M. Kim. 2002. Structure and mechanism in G protein-coupled receptors. Pharmaceut. Rev., 9, 287-294
- Kim, J.M., J. Hwa, P. Garriga, P.J. Reeves, U.L. Raj-Bhandary and H.G. Khorana. 2005. Light-driven activation of beta-2 adrenergic receptor signaling by a chimeric rhodopsin containing the beta-2 adrenergic receptor cytoplasmic loops. Biochemistry, 44, 2284-2292 https://doi.org/10.1021/bi048328i
- Matsumoto, Y., Y.S. Fukamachi, H. Mitani and S. Kawamura. 2006. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene, 371, 268-278 https://doi.org/10.1016/j.gene.2005.12.005
- Minamoto, T. and I. Shimizu. 2003. Molecular cloning and characterization of rhodopsin in a teleost (Plecoglossus altivelis, Osmeridae). Compo Biochem. PhysioI., 34, 559-570
- Nakayama, T.A. and H.G. Khorana. 1991. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. BioI. Chem., 266, 4269-4275
- O'Brien, J., H. Ripps and M.R. Al-Ubaidi. 1997. Molecular cloning of a rod opsin cDNA from the skate retina. Gene, 193, 141-150 https://doi.org/10.1016/S0378-1119(97)00079-6
- Ohguro, H., R.S. Johnson, L.H. Ericsson, K.A. Walsh and K. Palczewski. 1994. Control of rhodopsin multiple phosphorylation. Biochemistry, 33, 1023-1028 https://doi.org/10.1021/bi00170a022
- Oprian, D.D., R.S. Molday, R.J. Kaufman and H.G. Khorana. 1987. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. USA, 84, 8874-8878
- Ovchinnikov, Y.A., N.G. Abdulaev and A.S. Bogachuk. 1988. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett., 230, 1-5 https://doi.org/10.1016/0014-5793(88)80628-8
- Philp, A.R., J. Bellingham, J.M. Garcia-Fernandez and R.G. Forster. 2000. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett., 468, 181-188 https://doi.org/10.1016/S0014-5793(00)01217-5
- Sakmar, T.P., R.R. Franke and H.G. Khorana. 1989. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 86, 8309-8313
- Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor La-boratory Press, Plainview, NY
- Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progresssive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22, 4673-468 https://doi.org/10.1093/nar/22.22.4673
- Wang, J. K., J. H. McDowell and P.A. Hargrave. 1980. Site of attachment of 11-cis-retinal in bovine rhodopsin. Mol. BioI. Evol., 12, 53-61
- Yokoyama, S. 1995. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol. BioI. Evol., 12, 53-61 https://doi.org/10.1093/oxfordjournals.molbev.a040190
- Yokoyama, S. and F.B. Radlwimmer. 1998. The 'Five Sites' rule and the evolution of red and green color vision in mammals. Mol. Biol. Evol., 15, 560-567 https://doi.org/10.1093/oxfordjournals.molbev.a025956
Cited by
- Differential expression of rhodopsin and Exo-rhodopsin genes in the retina and pineal gland of olive flounder (Paralichthys olivaceus) vol.40, pp.3, 2007, https://doi.org/10.1080/09712119.2012.662894