DOI QR코드

DOI QR Code

Screening of Bacteria Producing Lipase from Insect Gut: Isolation and Characterization of a Strain, Burkholderia sp. HY-10 Producing Lipase

곤충 장내미생물로부터 lipase 생산능력이 우수한 Burkholderia sp. HY-10 균주의 분리 및 특성

  • 박두상 (한국생명과학연구원 곤충소재연구센터) ;
  • 오현우 (한국생명과학연구원 곤충소재연구센터) ;
  • 배경숙 (한국생명과학연구원 곤충소재연구센터) ;
  • 김향미 (한국생명과학연구원 곤충소재연구센터) ;
  • 허선연 (한국생명과학연구원 곤충소재연구센터) ;
  • 김남정 (농업과학기술원 농업생물부) ;
  • 설광열 (농업과학기술원 농업생물부) ;
  • 박호용 (한국생명과학연구원 곤충소재연구센터)
  • Published : 2007.04.30

Abstract

From the course of screening of useful enzyme producing microorganism from insect guts, we isolated 9 lipase producing strains and their lipase producing activities were tested. 16S rDNA sequence analysis showed that they were Gram negative bacteria grouped on Serratia sp., Pseudomonas sp., and Burkholderia sp.. Among them, an excellent lipase producing strain, Burkholderia sp. HY-10 identified by 16S rDNA analysis and biochemical methods, was further studied its lipase producing characteristics. It was isolated from a longcorm beetle, Prionus insularis and showed cell density dependent lipase producing activity in the culture media that contained olive oil as a carbon source. Maximum lipase production was achieved in the M9 media containing 0.5% yeast extract and 0.5% olive oil when cultured at $30^{\circ}C$ for 36-42 hrs.

곤충으로부터 유용 효소생산 미생물의 탐색 과정에서 우수한 lipase 생산균주 9종을 분리하고 lipase 생산능을 조사하였다 16S rDNA 분석 결과 분리된 균주는 주로 Serratia 속, Pseudomonas 속, Burkholderia 속에 속하는 그람음성균들로 분석되었다. 그 중 lipase 생산능이 가장 우수한 균주를 선별하고 16S rDNA 서열분석 및 생리 생화학적 분석 결과를 바탕으로 Burkholderia sp. HY-10으로 동정하였으며 균주의 lipase생산특성을 조사하였다. 이 균주는 톱하늘소의 장으로부터 분리되었으며 olive oil을 탄소원으로 포함하는 배지에서 배양하였을 때 세포밀도에 의존하여 lipase의 생산이 유도되는 특성을 나타내었고 0.5%의 yeast extract와 0.5%의 olive oil이 포함된 M9배지에서 $30^{\circ}C$, 36-42시간의 배양에 의해 lipase의 생산이 최대치에 도달하였다.

Keywords

References

  1. Brennan, Y., W.N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, M. Hernandez, M. Keller, K. Li, N. Palackal, A. Sittenfeld, G. Tamayo, S. Wells, G.P. Hazlewood, E.J. Mathur, J.M. Short, D.E. Robertson and G.A. Steer. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70: 3609-3617 https://doi.org/10.1128/AEM.70.6.3609-3617.2004
  2. Breznak, J.A. 1982. Intestinal microbiota of termites and other xylophaguous insects. Annu. Rev. Microbiol. 36: 323-343 https://doi.org/10.1146/annurev.mi.36.100182.001543
  3. Breznak, J.A. and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by tennites. Annu. Rev. Entomol. 39: 453-487 https://doi.org/10.1146/annurev.en.39.010194.002321
  4. Broderick, N.A., K.F. Raffa, R.M. Goodman and J. Handelsman. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70: 293-300 https://doi.org/10.1128/AEM.70.1.293-300.2004
  5. Coenye, T., P. Vandamme, J.R.W. Govan and J.J. Lipuma. 2001. Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39: 3427-3436 https://doi.org/10.1128/JCM.39.10.3427-3436.2001
  6. Conway, B.A. and E.P. Greenberg. 2002. Quorum-sensing signals and quorum-sensing genes in Burkholderia vietnamiensis. J. Bacteriol. 184: 1187-1191 https://doi.org/10.1128/jb.184.4.1187-1191.2002
  7. Dillon, R.J. and V.M. Dillon. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92 https://doi.org/10.1146/annurev.ento.49.061802.123416
  8. Egert, M., B. Wagner, T. Lemke, A. Brune and M. Friedrich. 2003. Microbial community structure in the midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69: 6659-6668 https://doi.org/10.1128/AEM.69.11.6659-6668.2003
  9. Farmer, JJ 3rd, N.K. Sheth, J.A. Hudzinski, H.D. Rose and M.F. Asbury. 1982. Bacteremia due to Cedecea neteri sp. nov.. J. Clin. Microbiol. 16: 775-778
  10. Gilligan, P.H. 1995. Pseudomonas and Burkholderia. pp. 509-519 in Manual of Clinical Microbiology, 6th ed. eds by R.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover and R.H. Yolken. Washington, D.C. American Society for Microbiology
  11. Gupta, R., N. Gupta and P. Rathi. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781 https://doi.org/10.1007/s00253-004-1568-8
  12. Heo, S., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin and H.Y. Park. 2006. Characterization of an extracellular xylanase in Panibacillus sp. HY-8 isolated from an herbivorous longicom beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  13. Jaeger, K.E., S. Ransac, B.W. Dijkstra, C. Colson, M. Heuvel and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  14. Jaeger, K.E., B.W. Kijkstra and M.T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipase. Annu. Rev. Microbiol. 53: 315-351 https://doi.org/10.1146/annurev.micro.53.1.315
  15. Jager, K.E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  16. Kinya, K., S. Kozaki and M. Sakuranaga. 1998. Degradation of lignin compounds by bacteria from termite guts. Biotechnol. Lett. 20: 459-462 https://doi.org/10.1023/A:1005432027603
  17. Kouker, G and Jaeger, K.E. 1987. Specific and sensitive assay for bacterial lipases. Appl. Environ. Microbiol. 53: 211-213
  18. Lee, G.E., C.H. Kim, H.J. Kwon, J. Kwak, D.H. Shin, D.S. Park, K.S. Bae and H.Y. Park. 2004. Biochemical characterization of an extracellular protease in Serratia proteomaculans isolated from a spider. Kor. J. Microbiol. 40: 269-274
  19. Lewenza, S., B. Conway, D.P. Greenberg and P.A. Sokol. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181: 748-756
  20. Nelson, M.J.K., S.O. Montgomery, E.J. O'Neill and P.H. Pritchard. 1986. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 52: 383-384
  21. Otero, C., M.A. Berrendero, F. Cardenas, E. Alvarez and S.W. Elson. 2005. General characterization of noncommercial microbial lipases in hydrolytic and synthetic reactions. Appl. Biochem. Biotechnol. 120: 209-223 https://doi.org/10.1385/ABAB:120:3:209
  22. Reetz, M.T. 2002. Lipases as practical biocatalysts. Curr. Opin. Biotechnol. 6: 145-150 https://doi.org/10.1016/S1367-5931(02)00297-1
  23. Ryu, H.S., H.K. Kim, W.C. Choi, M.H. Kim, S.Y. Park, N.S. Han, T.K. Oh and J.K. Lee. 2006. New cold-adapted lipase from Photobacterium lipo(vticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326 https://doi.org/10.1007/s00253-005-0058-y
  24. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization. pp 607-654 in Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
  25. Yabuuchi, E., Y. Kosako, H. Oyaizu, I. Yano, H. Hotta, Y. Hashimoto, T. Ezaki and M. Arakawa. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudononas homoloty group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36: 1251-1257 https://doi.org/10.1111/j.1348-0421.1992.tb02129.x

Cited by

  1. Potential applications of insect symbionts in biotechnology vol.100, pp.4, 2016, https://doi.org/10.1007/s00253-015-7186-9
  2. Screening of Nutritionally Important Gut Bacteria from the Lepidopteran Insects Through Qualitative Enzyme Assays 2016, https://doi.org/10.1007/s40011-016-0762-7
  3. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12 vol.93, pp.4, 2008, https://doi.org/10.1007/s10482-007-9210-2