DOI QR코드

DOI QR Code

Physics of the Coefficient of Friction in CMP

  • 발행 : 2007.04.01

초록

The implications of a theory of lubricated pad asperity wafer contact are traced through several fundamental areas of chemical-mechanical polishing. The hypothesized existence of a nanolubrication layer underlies a high accuracy model of polish rates. It also provides a quantitative explanation of a power law relationship between the coefficient of friction and a measure of pad surface flattening. The theory may further be useful for interpreting friction changes during polishing, and may explain why the coefficient of friction is sometimes observed to have a temperature or velocity dependence.

키워드

참고문헌

  1. F. Preston, J. of the Society. of Glass Technology, Vol. 11, p. 214, 1927
  2. S. R. Runnels, J. Electrochem. Soc., Vol. 141, No.7, p. 1900, 1994 https://doi.org/10.1149/1.2055048
  3. J. Sorooshian, L. Borucki, D. Stein. R. Timon, D. Hetherington, and A. Philipossian, Trans. ASME J. Tribology, Vol. 127, No.3, p. 639, 2005 https://doi.org/10.1115/1.1866168
  4. L. Borucki, J. Sorooshian, Z. Li, Y. Sampurno, Y. Zhuang, and A. Philipossian, Proc. 9th International CMP-MIC, Fremont, CA, p. 168,2005
  5. L. Borucki, D. Rosales-Yeomans, and A. Philipossian, Proc. 10th CAMP CMP Symposium, Lake Placid, NY, 2005
  6. Y. Sampurno, L. Borucki, and A. Philipossian, J. Electrochem. Soc., Vol. 152, No. 11,2005
  7. G. P. Muldowney, Proc. Pac RIM-CMP Conference, Tokyo, Japan,p. 33,2004
  8. S. Gold and V. A. Burrows, Electrochem. and Solid State Letters, Vol. 7, No. 12, p. G295, 2004 https://doi.org/10.1149/1.1809555
  9. L. J. Borucki, T. Witelski, C. P. Please, P. R. Kramer, and D. Schwendeman, J. Engineering Mathematics, Vol. 50, p. 1,2004 https://doi.org/10.1023/B:ENGI.0000042116.09084.00
  10. L. Borucki, H. Lee, Y. Zhuang, and A. Philipossian, Proc. AIChE Annual Meeting, Austin TX, 2004
  11. J. Luo and D. Dornfeld, IEEE Trans. on Semiconductor Manufacturing, Vol. 14, No.2, p. 112,2001
  12. X. Xia and G. Ahmadi, Particulate Science and Technology, Vol. 20, No.3, p. 187
  13. C. Zhou, L. Shan. J. R. Hight, S.-H. Ng, and S. Danyluk, Mat. Res. Soc. Symp. Proc., Materials Research Society, San Francisco, CA, Vol. 671, p. M1.6.1, 2001
  14. S.-H. Ng, doctoral dissertation, Georgia Institute of Technology, Atlanta, GA, 2004
  15. A. Z. Szeri, Fluid Film Lubrication Theory and Design, Cambridge U. Press, Ch. 8, 1998
  16. G. Muldowney, C. L. Elmufdi, and R. Palaparthi, Proc. 10th CAMP CMP Symposium, Lake Placid, NY, 2005
  17. K. L. Johnson, Contact Mechanics, Cambridge U. Press, 1985
  18. B. J. Hamrock and D. Dowson, Trans. ASME J. Lubrication Technology, Vol. 100, p. 236, 1978
  19. L. Borucki, L. Chams, and A. Philipossian, J. of the Electrochemical Soc., Vol. 151, No. 12, p. G809, 2004 https://doi.org/10.1149/1.1808635
  20. Z. Li, doctoral dissertation, the University of Arizona, Tucson, AZ, 2005
  21. P. A. Thompson, G. S. Grest, and M. O. Robbins, 'Phase transitions and universal dynamics in confined films,' Phys. Rev. Lett., Vol. 68, p. 3448, 1992 https://doi.org/10.1103/PhysRevLett.68.1992

피인용 문헌

  1. Effect of temperature in titanium chemical mechanical planarization vol.54, pp.7, 2015, https://doi.org/10.7567/JJAP.54.076502
  2. Investigating the effect of diamond size and conditioning force on chemical mechanical planarization pad topography vol.87, pp.4, 2010, https://doi.org/10.1016/j.mee.2009.08.007
  3. Effect of pad surface micro-texture on dishing and erosion during shallow trench isolation chemical mechanical planarization vol.53, pp.8, 2014, https://doi.org/10.7567/JJAP.53.086501
  4. Effect of Pad Surface Micro-Texture on Removal Rate during Interlayer Dielectric Chemical Mechanical Planarization Process vol.52, pp.1R, 2013, https://doi.org/10.7567/JJAP.52.018001
  5. Improvements in Stribeck Curves for Copper and Tungsten Chemical Mechanical Planarization on Soft Pads vol.6, pp.5, 2017, https://doi.org/10.1149/2.0241705jss
  6. Effect of Slurry Injection System Position on Removal Rate for Shallow Trench Isolation Chemical Mechanical Planarization Using a Cerium Dioxide Slurry vol.6, pp.7, 2017, https://doi.org/10.1149/2.0321707jss
  7. Effect of Various Slurry Injection System Configurations on Removal Rates of Silicon Dioxide Using a Ceria-Based Chemical Mechanical Planarization Slurry vol.6, pp.7, 2017, https://doi.org/10.1149/2.0311707jss