벼 유수분화기 생육 및 질소영양 상태에 따른 쌀 단백질함량의 수비 질소 반응

Response of Grain Protein Content to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Plant Nitrogen Status of Rice

  • 김민호 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 이규종 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 이변우 (서울대학교 농업생명과학대학 식물생산과학부)
  • Kim, Min-Ho (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Kyu-Jong (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Byun-Woo (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University)
  • 발행 : 2007.03.31

초록

백미의 단백질 함량은 쌀의 품질과 식미을 결정하는 중요한 요인이며, 질소시비에 의해서 크게 좌우된다. 따라서 본 실험에서는 기비 및 분얼비 시용량을 달리하여 수비 시기인 유수분화기에 벼의 생육 및 질소영양 상태를 다양하게 조성한 상태에서 수비 시용량을 달리하였을 때의 백미 단백질함량의 변화를 검토함으로써 고품질 쌀 생산에 맞는 질소 시비체계 설정을 위한 기초 자료를 얻고자 하였다. 1. 백미의 단백질함량은 $6{\sim}9%$로서 기비+분얼비 및 수비 시용량비 증가할수록 높아지는 경향이었는데, 기비+분얼비 시용량이 20 kgN/10a까지 증가하더라도 수비 1.8 kgN/10a 이하일 경우 백미의 단백질함량은 7% 이하였으며. 기비+분얼비 보다는 수비에 의한 단백질 함량 증가폭이 더 컸다. 2. 수확기 지상부 질소함량과 백미의 질소함량간에는 고도로 유의한 직선회귀 관계를 보였는데, 수확기 총 질소흡수량 중에서 58.3%와 46.5%가 각각 이삭과 백미로 전이되었고, 연차간에 큰 차이가 없었다. 3. 백미의 단백질 함량은 유수형성기 지상부 질소 집적량 증가에 따라서는 직선적으로 증가하였고, 유수분화기 이후 수확기까지의 질소 집적량 증가에 따라서는 2차곡선적으로 증가하였으며, 후자의 영향이 컸다. 유수분화기 지상부 질소 집적량이 8 kgN/10a까지 증가하더라도 수비 이후의 질소집적량이 3 kgN/10a미만일 경우에는 백미의 단백질함량이 7% 미만이었다. 4. 수확기까지 총 질소 집적량이 같더라도 단위면적 당 영화수에 영향이 큰 유수분화기까지의 질소 집적량이 차지하는 비중이 클수록 그리고 등숙기 기상환경이 좋아 sink의 충진에 유리한 해에 백미의 단백질함량이 낮아지는 경향이었다.

As protein content of milled rice, generally used as a benchmark for rice eating quality, is greatly affected by N fertilization and nutrition status of rice plant, understanding its response to nitrogen rate and plant nitrogen status at different growth stage is important for recommending N fertilizer management for high quality rice production. The responses of milled-rice protein content were compared and quantified under various combinations of basal+tillering and panicle N application levels in 2001 and 2002. Protein content of milled rice was ranged from 6 to 9%, increasing significantly with increasing basal+tillering and panicle N rates. However, milled rice protein content was raised much greater by panicle N than by basal+tillering N fertilization. Even though basal+tillering N increased up to 20 kg/ha, protein content of milled rice was observed less than 7% in case that panicle N was applied below 1.8 kg/10a. Regression analysis revealed that nitrogen accumulated until harvest was partitioned with almost constant rates of 58.3% and 46.5% to panicle and milled rice, respectively. The partitioning rates was slightly but not significantly different between experimental years. Protein content of milled rice showed linear and quadratic responses to the shoot N accumulation until panicle initiation stage (PIS) ant shoot nitrogen accumulation from PIS to harvest, respectively. The increment of milled-rice protein content per unit N increase was much greater in shoot N accumulation from PIS to harvest than in that until PIS. Regardless of shoot N accumulation until PIS upto 8 kg/10a, protein content of milled rice was lower than 7% and ranged from 6.5 to 7.5% in case that shoot N accumulation from PIS to harvest was below 3.0 kg/10a and below 6.0 kg/10a respectively. It would be concluded that even under the same N accumulation until harvest milled rice protein content could be different according to the N fertilizer management and weather condition especially during ripening, providing rooms for controlling protein content by N fertilizer management without damage to grain yield.

키워드

참고문헌

  1. 김민호, 부금동, 이변우. 2006a. 유수분화기 식생지수와 SPAD 값에 의한 벼 질소 수비시용량 결정. 한국작물학회지. 51(5) : 386-395
  2. 김민호, 부금동, 이변우. 2006b 벼 유수분화기 생장 및 질소영양상태에 따른 수량의 수비질소 반응. 한국작물학회지. 51(7) : 571-583
  3. 박래경 외 38인. 1994. 작물 품질개량 육종, 박래경장장 정년퇴임기념 발간추진위원회
  4. 허문회, 김광호, 서학수. 1974. 수도 고단백 계통육성을 위한 기초적 연구 : III. 질소, 인산, 가리의 시용이 미립내 단백질 함량에 미치는 영향. 한국작물학회. 15 : 123-128
  5. 허문회, 박형직. 1973. 수도 고단백 계통육성을 위한 기초적 연구 : II. 성숙기간중의 잎.줄기.현미 내의 단백질함량 변이. 한국작물학회. 13 : 69-72
  6. De Datta, S. K., W. N. Obcemea, and R. K. lana. 1972. Protein content of rice grain as affected by nitrogen fertilizer and some triazines and substituted ureas. Agron. J. 64 : 785-788 https://doi.org/10.2134/agronj1972.00021962006400060024x
  7. Gomez, K. A. and S. K. De Datta. 1975. Influence of environment on protein content in rice. Agronomy Journal. 67 : 565-568 https://doi.org/10.2134/agronj1975.00021962006700040029x
  8. Heu, M. H., C. Y. Lee, J. Y. Choe, and S. I. Kim. 1969. Variability of protein content in rice grown at several different environments. Korean J. Crop Sci. 7 : 79-84
  9. Islam, N., S. Inanaga, N. Chishaki, and T. Horiguchi. 1996. Effect of N top-dressing on protein content in Japonica and Indica rice grains. Cereal Chem. 42 : 225-235
  10. Juliano, B. O., A. A. Antonio, and B. V. Esmama. 1973. Effect of protein content on the distribution and properties of rice protein. J. Sei. Food Agric. 24 : 295-306 https://doi.org/10.1002/jsfa.2740240306
  11. Kropff, M. J., K. G. Cassman, H, H, Vanlaar, and S. Peng. 1993. Nitrogen and yield potential of irrigated rice. Plant Soil. 156 : 391-394 https://doi.org/10.1007/BF00025065
  12. Martin, M. and M. A. Fitzgerald. 2002. Proteins in rice grains influence cooking properties. Journal of Cereal Science. 36 : 285-294 https://doi.org/10.1006/jcrs.2001.0465
  13. Martre, P., P. D. Jamieson, M. A. Semenov, R. F. Zyskowski, J. R. Porter, and E. Triboi. 2006. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. European J. of Agronomy. 25(2) : 138-154 https://doi.org/10.1016/j.eja.2006.04.007
  14. Martre, P., J. R. Porter, P. D. Jamieson, and E. Tribol. 2003. Modeling grain nitrogen accumulation and protein compo­sition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol. 133 : 1959-1967 https://doi.org/10.1104/pp.103.030585
  15. Matsuda, H., H, Fujii, H. Ando, S. Mori, C. Kominami, and Y. Shibata. 2000. Protein content of milled rice as affected by number of grain per panicle. Jpn. J. Soil Sci. Plant Nutr. 71 : 697-699
  16. Matsuda, H., H. Fujii, Y. Shibata, C. Kominami, S. Hasegawa, K. Oobuchi, and H. Andou. 1997. Effect of number of grains per amount of N at Heading and amount of N in grain on the protein content of milled rice. Jpn. J. Soil Scl. Plant Nutr. 68 : 501-507
  17. Matsue, Y., K. Odahara, and M. Hiramatsu. 1994. Differences in protein content, amylose Content and palatability in relatIon to location of grains within rice panicle. Jpn. J. Crop Sci. 63 : 271-277 https://doi.org/10.1626/jcs.63.271
  18. Matsushima, S. 1995. Physiology of high-yielding rice plants from the viewpoint of yield components, In T. Matsuo, K. Kumazawa, R. Ishii, K. Ishihara, H, Hirata, Science of The Rice Plant, Volume 2 : Physiology. Food and Agriculture Policy Research Center, Tokyo, Japan. pp. 737-766
  19. Muchow, R. C., and T. R. Sinclair. 1995. Effect of nitrogen supply on maize yield : II. Field and model analysis. Agronomy J. 87 : 642-648 https://doi.org/10.2134/agronj1995.00021962008700040006x
  20. Nguyen, T. H., M. H. Kim, and B. W. Lee. 2006a. Response of grain yield and milled-rice protein content to nitrogen topdress timing at panicle initiation stage of rice. Korean J. Crop Sci. 51(1) : 1-13
  21. Nguyen, T. H., M. H, Kim, L. T Nguyen, and B. W. Lee. 2006b. Response of grain yield and milled-rice protein con­tent to nitrogen rates applied at different growth stages of rice. Korean J. Crop Sci. 51(1) : 14-25
  22. Patrick, R. M., F. H. Hoskins, E. Wilson, and F. J. Peterson. 1974. Protein and amino acid content of rice as affected by application of nitrogen fertilizer. Cereal Chem. 51 : 84-95
  23. Perez, C. M., B. O. Juliano, S. P. Liboon, J. M. Alcantara, and K. G. Cassman. 1996. Effects of late nitrogen fertilizer appli­cation on head rice yield, protein content, and grain quality of rice. Cereal Chem. 73 : 556-560
  24. Souza, S. R., E. M. L. M. Stark, and M. S. Fernandes. 1993. Effect of supplemental nitrogen on the quality of rice pro­teins. J. Plant Nutr. 16 : 1739-1751 https://doi.org/10.1080/01904169309364647