Adsorption Characteristic of Ammonia by the Cation-Exchange Membrane

양이온 교환막에 의한 암모니아 흡착 특성

  • Kim, Min (Department of Safety Environmental Energy System Engineering, Dongguk University) ;
  • Choi, Hyuk-Jun (Department of Safety Environmental Energy System Engineering, Dongguk University) ;
  • Yang, Kab-Suk (Department of Safety Environmental Energy System Engineering, Dongguk University) ;
  • Heo, Kwang-Beom (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Kim, Byoung-Sik (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 김민 (동국대학교 안전환경에너지시스템공학과) ;
  • 최혁준 (동국대학교 안전환경에너지시스템공학과) ;
  • 양갑석 (동국대학교 안전환경에너지시스템공학과) ;
  • 허광범 (동국대학교 생명 화학공학과) ;
  • 김병식 (동국대학교 생명 화학공학과)
  • Published : 2007.03.30

Abstract

In this research, the cation-exchange membrane (SS membrane) containing sulfonic acid group was prepared by radiation induced grafted polymerization onto a porous hollow fiber membrane to effectively remove ammonia which was produced by urea decomposition for peritoneum dialysis system. And the metal ionic cross-linking cation-exchange membrane (SS-M membrane) was prepared by the adsorption of metallic ions (Cu, Ni, Zn) to the SS membranes. The pure water flux and adsorption capacities of ammonia to SS and SS-M membranes were examined. The pure water flux of SS membrane decreased rapidly with the density of $SO_3H$ group increasing. As the metallic ions were adsorbed to the SS membrane, the pure water flux was increased. The adsorption capacities of ammonia at the SS membrane increased with increasing of density of $SO_3H$ group. The ion-exchange capacity of ammonia of the SS membrane was approximately proportional 1 : 1 to the density of $SO_3H$ group. The SS membrane had higher adsorption capacities than the SS-M membrane. The highest adsorption capacities of SS and SS-M membrane appeared the highest pH 9.

본 연구에서는 복막 투석 시스템에 있어서, 요소를 가수분해 후 발생하는 암모니아를 제거하기 위하여, 방사선 그라프트 중합법에 의해 다공성 중공사막에 술폰산기($SO_3H$)를 도입시킨 양이온 교환막(이때 얻어진 막을 SS막이라 함)을 합성하였다. 여기에 금속이온(Cu, Ni, Zn)을 이용하여 그라프트 체인을 가교시킨 이온가교형 양이온 교환막(이때 얻어진 막을 SS-M막이라 함)을 합성하여, SS막과 SS-M막의 투과 유속과 암모니아의 흡착에 대하여 고찰하였다. 술폰산기 밀도에 따라 순수투과 유속은 술폰산기 밀도가 높아짐에 따라 투과 유속이 급격히 감소하였으나, 금속 이온이 도입됨에 따라, 투과 유속이 빨라진다는 것을 알 수 있었다. SS막의 경우 암모니아 흡착은 이온교환기 용량에 따라 1 : 1로 흡착되었고, SS-M막 보다 높은 흡착량을 나타났다. 또한, SS막, SS-M막 모두 pH 9에서 가장 높은 흡착량을 나타냈다.

Keywords

References

  1. http://www.kidney2000.co.kr/menu/inl.htm
  2. M. Kudo, K. Koyama, and I. Fukunishi, 'Depression and anxiety in patients on hemodialysis', J. of Psychosomatic Research, 55, 170 (2003)
  3. S. J. Rubin, 'Continuous ambulatory peritoneal dialysis: Dialysate fluid cultures', Clinical Microbiology Newsletter, 6, 3 (1984) https://doi.org/10.1016/S0196-4399(84)80092-6
  4. W. Lee, K. Saito, S. Furusaki, T. Sugo, and K. Makuuchi, 'Design of urea-permeable anion-exchange membrane by radiation-induced graft polymerization', J. of Membrane Sci., 81, 295 (1993) https://doi.org/10.1016/0376-7388(93)85181-U
  5. K. Saito, W. Lee, and T. Sugo, 'Preparation and evaluation of novel ion-exchange membranes prepared by rediation-induced graft polymerization', J. Ion Exchange, 7 (1996)
  6. B. S. Kim, M. Kim, K. B. Heo, J. H. Hong, W. J. Na, and J. H. Kim, 'Preparation of anion-exchange membrane for selective separation of urea and ion', J. Korea Ind. Eng. Chem., 17, 303 (2006)
  7. A. Shanableh, D. Abeysinghe, and A. Hijazi, 'Effect of cycle duration on phosphorus and nitrogen transformations in biofilters', Water Research, 31, 149 (1997) https://doi.org/10.1016/S0043-1354(96)00230-8
  8. M. Goto, N. Hayashi, and S. Goto, 'Adsorption and desorption of phenol on anion-exchange resin and activated carbon', Environ. Sci. Technol., 20, 463 (1986) https://doi.org/10.1021/es00147a004
  9. H. Iwata, K. Saito, T. Sugo, and J. Okamoto, 'Adsorption characteristics of an immobilized metal affinity membrane', Biotechno. Prog., 7, 412 (1991) https://doi.org/10.1021/bp00011a005
  10. S. Tsuneda, H. Shinano, K. Saito, and S. Furusaki, 'Binding of lysozyme onto a cation-exchange microporous membrane containg tentacle-type grafted polymer branches', Biotechnol. Prog., 10, 76 (1994) https://doi.org/10.1021/bp00025a009
  11. H. Shinano, S. Tsuneda, K. Satio, and S. Furusaki, T. Sugo, 'Ion exchange of lysozyme during permeation across a microporous sulfopropyl-groupcontaining hollow fiber', Biotechnol. Prog., 9, 193 (1993) https://doi.org/10.1021/bp00020a012
  12. H. K. Chung and B. S. Kim, 'Determination of aqueous ammonia with indophenol method', J. of the Korean Enviromental Sci. Soc., 4, 91 (1995)
  13. J. H. Kim, W. J. Na, B. S. Kim, and M. Kim, 'Chiral separation of tryptophan by immobilized BSA (bovine serum albumin) membrane', Membrane J., 16, 133 (2006)
  14. H. Ogawa, K. Sugita, K. Satio, M. Kim, M. Tamada, A. Katakai, and T. Sugo, 'Binding of ionic surfactants to charged polymer brushes grafted onto porous substrates', J. of Chromatography A, 954, 89 (2002) https://doi.org/10.1016/S0021-9673(02)00110-3
  15. N. Sasagawa, K. Satio, K. Sugita, S. Kunori, and T. Sugo, 'Ionic crosslinking of SO3H-group-containing graft chains helps to capture lysozyme in a permeation mode', J. of Chromatography A, 848, 161 (1999) https://doi.org/10.1016/S0021-9673(99)00500-2
  16. J. S. Park and Y. C. Nho, 'Sulfonation of styrene grafted polypropylene non-fabric and its ammonia adsorption behavior', Polymer, 22, 47 (1998)