Muscle Stiffness and Elasticity of Masticatory Muscles on Gum Chewing

껌씹기가 저작근의 경도와 탄성도에 미치는 효과

  • Won, Tae-Hee (Department of Oral Medicine, Dental School, Dankook University) ;
  • Kim, Mee-Eun (Department of Oral Medicine, Dental School, Dankook University) ;
  • Kim, Ki-Suk (Department of Oral Medicine, Dental School, Dankook University)
  • 원태희 (단국대학교 치과대학 구강내과학 교실) ;
  • 김미은 (단국대학교 치과대학 구강내과학 교실) ;
  • 김기석 (단국대학교 치과대학 구강내과학 교실)
  • Published : 2007.12.30

Abstract

Some researchers suggested that tactile sensor system would be useful in evaluating masticatory muscles of TMD patients, but there were few studies on the effects of chewing with time. The aim of this study was to investigate the change of elasticity and stiffness for masseter and temporal muscles of normal subjects before, during and after gum chewing and to obtain the baseline data for further researches on the elasticity and stiffness for masticatory muscles of TMD patients. Stiffness and elasticity of their anterior temporalis and inferior masseter muscle were measured bilaterally by a tactile sensor system. Each subject was instructed to sit on a chair for evaluation of masticatory muscles. Before operating the sensor, the thickest skin area over anterior temporalis and inferior masseter muscles were selected as the points to be pressed by a tactile sensor, and marked with a pen. While the teeth of subjects were lightly contacted, the probe of the tactile sensor was placed perpendicularly over the marked point over the skin, followed by computer-controlled movement including gently pressing straight down on the muscle for a second and retracting. All subjects were instructed to chew gum (Excellent Breath, Taiyo Co., Japan) bilaterally with a velocity of 2 times per second for 40 minutes after the first measurement had been performed for the baseline data of all subjects. The measurements had been repeated during chewing with 10 minutes of interval and continued for 40 minutes with same interval after chewing. Resultantly, the decrease of elasticity and the increase of stiffness in masticatory muscles can be seen significantly within 10 minutes after chewing and those were maintained during chewing without significant change with chewing time. The elasticity of muscles was recovered within 10 minutes after stopping chewing, but the stiffness was recovered more lately than elasticity by about 10 minutes. Based on these results, it can be concluded that elasticity and stiffness of muscles would be good indicators to evaluate the masticatory muscles objectively, when more supported by further researches.

최근 tactile sensor 를 사용하여 근육의 경도와 탄성도를 조사하는 방법이 저작근의 새로운 평가방법으로 제시되고 있다. 본 연구의 목적은 촉각센서를 이용하여 일정시간 껌씹기를 시행전, 중, 후의 저작근의 경도와 탄성도를 조사하여 향후 턱관절 장애 환자의 저작근 평가를 위한 기초자료를 확보하는 데 있다. 건강한 성인 8명을 대상으로 양측 전측두근(anterior temporalis), 하교근(inferior masseter)의 경도와 탄성도를 촉각센서 (Venustron II, Axion Co., Japan)를 이용하여 다음과 같이 측정하였다. 피검자들을 unit-chair에 바로 앉힌 상태에서 양측 교근 및 측두근 부위를 촉진을 통해 전 측두근(temporalis anterior), 하 교근(masseter inferior) 두 부위를 펜으로 표시하였다. 실험의 재현성을 위하여 투명한 종이에 ala-tragus line을 표시한 후 두 부위를 투명종이 위에 표시하였다. 편안한 상태에서 촉각센서를 사용하여 양측 하 교근 및 전 측두근의 경도와 탄성도를 측정한 후, 껌(Excellent Breath, Taiyo Co., Japan)을 양측으로 씹게 하여 1초당 2회의 속도로 씹게 하였다. 껌을 40분동안 저작하는 동안 10분, 20분, 30분, 40분에 양측 하 교근 및 전 측두근의 경도와 탄성도를 측정하였다. 그 후 껌을 뱉게 하고 하악의 안정위 상태에서 10분, 20분, 30분, 40분 후 양측하 교근 및 전 측두근의 경도와 탄성도를 각각 측정하였다. 측정치들을 반복측정 이원분산분석과 다중비교를 통하여 비교하였다. 실험결과 측두근과 교근을 비교 시 탄성도, 경도 모두 교근의 변화가 유의하게 크다. 또한 저작하면 서서히 경도는 증가하며 탄성도는 반대로 감소한다. 탄성도 및 경도는 저작 시 신속히 증가하나 저작 종료 후에는 탄성도만 신속히 회복되나 경도는 약 10분 이상의 일정시간이 지나야 회복된다. 이상의 결과들을 보아 임상적으로 좀 더 다양한 연구와 기초자료가 확보된다면, 저작근의 근육 상태를 평가하는데, 근육의 탄성도와 경도를 조사하는 tactile sensor system은 유익한 기기로서 활용될 수 있을 것이다.

Keywords

References

  1. McNeil C. Temporomandibular disorders: guidelines for classification, assessment, and management. Chicago, 1993, Quintessence Books
  2. Glaros AG, McGlynn FD, Kapel L. Sensitivity, specificity, and the predictive value of facial electromyographic data in diagnosing myofascial pain-dysfunction. Cranio 1989;7:189-193 https://doi.org/10.1080/08869634.1989.11678282
  3. Gervais RO, Fitzsimmons GW, Thomas NR. Masseter and temporalis electromyographic activity in asymptomatic, subclinical, and temporomandibular joint dysfunction patients. Cranio 1989;7:52-57 https://doi.org/10.1080/08869634.1989.11678268
  4. Carlson CR, Okeson JP, Falace DA, Nitz AJ, Curran SL. Comparison of psychologic and physiologic functioning between patients with masticatory muscle pain and matched controls. J Orofacial Pain 1993;7:15-22
  5. Yemm R. A neurophysiological approach to the pathology and etiology of Temporomandibular dysfunction. J Oral Rehabil 1985;12:343-353 https://doi.org/10.1111/j.1365-2842.1985.tb01289.x
  6. Majewski RF, Gale EN. Electromyographic activity of anterior temporal area pain patients and non pain subjects. 1984;63:1228-1231 https://doi.org/10.1177/00220345840630101301
  7. Lund JP, Donga R, Widmer CG, Stohler CS. The pain adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol 1991;69:683-694 https://doi.org/10.1139/y91-102
  8. Inaba H, Miyaji K, Kaneko Y, Ohtsuka T, Takamoto S, Omata S. Muscle contraction and relaxation described by tactile stiffness. Artificial Organs 2001;25(1):42-46 https://doi.org/10.1046/j.1525-1594.2001.025001042.x
  9. Katayma H, Inada J. Evaluation of muscle fatigue in the masseter muscle using a tactile sensor. Shika Igaku (Journal of the Osaka Odontology Society) 2000;63(1):23-32
  10. Inada J, Katayama H, Yoshida Y. Research pertaining to the hardness/softness of the facial muscles and the soft tissue of the inner oral cavity. Jap J Oral Biol 1998;40:160
  11. Inaba H, Miyaji K, Kaneko Y, Ohtsuka T, Takamoto S, Omata S. Muscle contraction and relaxation described by tactile stiffness. Artificial Organs 2001;25(1):42-46 https://doi.org/10.1046/j.1525-1594.2001.025001042.x
  12. Katayma H, Inada J. Evaluation of muscle fatigue in the masseter muscle using a tactile sensor. Shika Igaku (Journal of the Osaka Odontology Society) 2000;63(1):23-32
  13. Kim SH, Kim ME. Muscle stiffness and elasticity related to physical therapeutic modalities. Korean J Oral Med 2007;32(3):319-328
  14. Inada J, Katayama H, Yoshida Y. Research pertaining to the hardness/softness of the facial muscles and the soft tissue of the inner oral cavity. Jap J Oral Biol 1998;40:160
  15. Thexton AJ, Hiiemae KM, Crompton AW. Food consistency and bite size as regulators of jaw movements during feeding in the cat. J Neurol 1980;44:456-474
  16. Gorniak GC, Gans C. Quantative assay of electromyograms during mastication in domestic cats. J Morphol 1980;163:253-281 https://doi.org/10.1002/jmor.1051630304
  17. Horio T. Kawamura Y. Effects of texture of food on chew patterns in the human subjects. J Oral Rehab 1989;16:177-183 https://doi.org/10.1111/j.1365-2842.1989.tb01331.x
  18. Katayama H, Inada J. Evaluation of muscle fatigue in the masseter muscle using a tactile sensor. Shika Igaku (Journal of the Osaka Odontology Society) 2000;63(1):23-32
  19. Kawamura Y. Nobuhara M. Studies on masticatory function II. The swallowing threshold of persons with normal occlusion and malocclusion. Med J Osaka Univ 1957;8:241-246
  20. Fricton JR, Kroening RJ, Hathaway KM. TMJ and Craniofacial Pain: Diagnosis and Management. St Louis, 1988, Ishiyaku EuroAmerica, pp.1-10,39-52
  21. Travell JG, Simons DG. Myofascial Pain and Dysfunction. The Trigger Point Mannual. Baltimore, 1983, Williams and Wilkins, pp.45-102,183-201, 305-320
  22. Frost HM. Musculoskeletal pain. In Alling CC, Mahan PE(Eds). Facial Pain. 2nd ed., Philadelphia, 1977, Lea and Febiger, pp.137-142
  23. Gross SG. Diagnostic anesthesia: Guidelines for the practitioner. Dent Clin North Am 1991;35(1):141-153