꼭지점 좌표 벡터 크기값의 시간축 웨이블릿 변환을 이용한 3차원 메쉬 시퀀스의 블라인드 워터마킹

A Blind Watermarking for 3-D Mesh Sequence Using Temporal Wavelet Transform of Vertex Norms

  • 김민수 (영남대학교 정보통신공학과 대학원 멀티미디어 신호처리 연구실) ;
  • 조재원 (영남대학교 정보통신공학과 대학원 멀티미디어 신호처리 연구실) ;
  • ;
  • 정호열 (영남대학교 정보통신공학과 대학원 멀티미디어 신호처리 연구실)
  • 발행 : 2007.03.31

초록

본 논문에서는 3차원 메쉬 시퀀스의 워터마킹 기법을 제안한다. 제안된 방법은 연결성 정보가 일정한 동형 메쉬 시퀀스의 각 꼭지점 좌표 벡터 크기 값을 시간축 웨이블릿 변환하고, 삽입하고자 하는 워터마크에 따라 고주파수(혹은 중간 주파수) 대역의 웨이블릿 계수의 확률 분포를 수정한다. 이 때, 저주파수 대역의 계수값을 참조하여 고주파수(혹은 중간 주파수 대역의 계수값을 복수개의 그룹(bin)으로 분할하고, 각 bin의 2차 모멘트를 변화시키는 방법으로 한 비트의 워터마크를 삽입한다. 동형 메쉬 시퀀스의 경우 한 그룹에 속한 꼭지점 좌표 크기의 웨이블릿 계수값 또한 같은 그룹에 할당되며, 워터마크는 이 웨이블릿 계수에 삽입된다. 제안된 방법은 신호의 확률 분포를 이용하기 때문에 일반적인 신호처리 변형에 강인할 뿐만 아니라, 워터마크 검출 시 원본이 없이도 삽입된 워터마크를 검출할 수 있다. 다양한 신호처리 공격 실험을 통해 제안된 방법의 유효성을 확인한다.

In this paper, we present a watermarking method for 3-D mesh sequences. The main idea is to transform vertex norm with the identical connectivity index along temporal axis using wavelet transform and modify the distribution of wavelet coefficients in temporally high (or middle) frequency frames according to watermark bit to be embedded. All vertices are divided into groups, namely bin, using the distribution of coefficients in low frequency frames. As the vertices with the identical connectivity index over whole frames belong to one bin, their wavelet coefficients are also assigned into the same bin. Then, the watermark is embedded into the wavelet coefficients of vertex norm. Due to the use of the distribution, our method can retrieve the hidden watermark without any information about original mesh sequences in the process of watermark detection. Through simulations, we show that the proposed is flirty robust against various attacks that are probably concerned in copyright protection of 3-D mesh sequences.

키워드

참고문헌

  1. I. Cox, M. L. Miller, J.A. Bloom, Digital Watermarking, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002
  2. D. Hearn, M. Pauline Baker, 'Computer Graphics with OpenGL,' Prentice Hall, 3rd Edition, 2004
  3. R. Ohbuchi, H. Masuda, and M. Aono, 'Watermarking three-dimensional polygonal models through geometric and topological modifications,' IEEE Journal on Selected Areas in Communications, vol.16, no.4, pp.551-560, May 1998 https://doi.org/10.1109/49.668977
  4. F. Cayre, B. Macq, 'Data hiding on 3-d triangle meshes,' IEEE Trans. on Signal Processing Vol. 51, p939-949, 2003 https://doi.org/10.1109/TSP.2003.809380
  5. A. G. Bors, 'Watermarking Mesh-Based Representations of 3-D Objects Using Local Moments,' IEEE Trans. on Image Processing, vol 15, no. 3, pp. 687- 701, Mar. 2006 https://doi.org/10.1109/TIP.2005.863116
  6. E. Praun, H. Hoppe, and A. Finkelstein, 'Robust mesh watermarking,' Proceedings of SIGGRAPH99, Los Angeles, pp. 49-56, Aug. 1999
  7. Z. Karni and C. Gotsman, 'Compression of soft-body animation sequences,' Computer and Graphics, vol. 28, no. 1, pp. 25-34, feb 2004 https://doi.org/10.1016/j.cag.2003.10.002
  8. J. E. Lengyel, 'Compression of time-dependent geometry,' in Proceeding of SI3D '99, New York, NY, USA, 1999, pp. 89-95, ACM Press
  9. I. Guskov and A. Khodakovsky, 'Wavelet compression of parametrically coherent mesh sequences,' in Proceedings of SCA '04, 2004, pp. 183-192
  10. F. Payan and M. Antonini, 'Wavelet-based compression of 3d mesh sequences,' in Proceedings of IEEE ACIDCAICMI'2005, Tozeur, Tunisia, november 2005
  11. L. Ibarria and J. Rossignac, 'Dynapack: space-time compression of the 3d animations of triangle meshes with fixed connectivity,' in SCA '03, 2003, pp. 126-135
  12. O. Benedens, 'Geometry-based watermarking of 3D models,' IEEE Computer Graphics and Applications, vol.19, no.1, pp.46-55, Jan./Feb. 1999 https://doi.org/10.1109/38.736468
  13. S.H. Lee, T.S. Kim, B.J. Kim, S.G. Kwon, K.R. Kwon, and K.I. Lee, '3D polygonal meshes watermarking using normal vector distributions,' IEEE International Conference on Multimedia & Expo, Maryland, USA, Jul. 6-9, 2003, vol.3, pp.105-108
  14. Z. Yu, H.S. Ip, and L.F. Kwok, 'A robust watermarking scheme for 3D triangular mesh models,' Pattern Recognition, vol.36, issue.11, pp.2603-2614, 2003 https://doi.org/10.1016/S0031-3203(03)00086-4
  15. Z. Yu, H.S. Ip, and L.F. Kwok, 'Robust watermarking of 3D polygonal models based on vertice scrambling,' Computer Graphics International 2003, Tokyo, Japan, Jul. 9-11, 2003, pp.254-257, 2003
  16. Jae-Won Cho, R. Prost, H.Y. Jung, 'An oblivious watermarking for 3-d polygonal meshes using distribution of vertex norms,' IEEE Trans. on Signal Processing, vol. 55, no. 1, pp. 142-155, Jan 2007 https://doi.org/10.1109/TSP.2006.882111
  17. S. Kanai, H. Date, and T. Kishinami, 'Digital watermarking for 3D polygons using multiresolution wavelet decomposition,' Proceedings 6th IFIP, WG 5.2, GEO-6, Tokyo, Japan, Dec. 1998 pp.296-307
  18. K. Yin, Z. Pan, J. Shi, and D. Zhang, 'Robust mesh watermarking based on multiresolution processing,' Computers and Graphics, vol.25, pp.409-420, 2001 https://doi.org/10.1016/S0097-8493(01)00065-6
  19. M.S. Kim, J.W. Cho, R. Prost, H.Y. Jung, 'Watermarking of 3D Irregular Meshes Based on Wavelet Multiresolution Analysis,' LNCS 3710, pp. 313-324, Sept. 2005
  20. M.S. Kim, J.W Cho, H.Y. Jung, R. Prost, 'A Robust Blind Watermarking for 3D Meshes Using Distribution of Scale Coefficients in Irregular Wavelet Analysis,' In Proc. of ICASSP 2006, vol. 5, pp. 477-480, Toulouse, France, May, 2006
  21. T.H. Kim, J.H. Lee, S.Y. Shin, 'Robust Motion Watermarking based on Multiresolution Analysis,' Computer Graphics Forum, Vol. 19 No. 3, pp. 189-198, 2000 (Proc. EUROGRAPHICS '2000)
  22. S. Yamazaki, 'Watermarking Motion Data,' In Proc. Pacific Rim Workshop on Digital Steganography (STEG04), pp. 177-185, Nov 2004
  23. G. Doerr, J.-L. Dugelay, 'A guided tour of video watermarking,' Signal Processing. Image Communication. vol. 18, pp.263-282, 2003 https://doi.org/10.1016/S0923-5965(02)00144-3
  24. M.S Kim, R. Prost, H.Y. Chung, H.Y. Jung, 'A Blind Watermarking for 3-D Dynamic Mesh Model Using Distribution of Temporal Wavelet Coefficients,', International Workshop on Multimedia Content Representation, Classification and Security 2006, Sept, 2006
  25. D. Field, 'Laplacian smoothing and delaunay triangulation,' Communication and Applied Numerical Methods, vol. 4, pp. 709-712, 1988 https://doi.org/10.1002/cnm.1630040603
  26. J.W. Cho, M.S. Kim, S. Valette, H.Y. Jung, and R. Prost, '3-d dynamic mesh compression using wavelet-based multiresolution analysis,' In Proceedings of ICIP 2006, pages 529--532, october 2006
  27. J.W. Cho, M.S. Kim, S. Valette, H.Y. Jung, and R. Prost, 'A 3-D Mesh Sequence Coding Using Combination of Spatial and Temporal Wavelet Analysis,' MIRAGE 2007, March, 2007, accepted