CRC-Turbo Concatenated Code for Hybrid ARQ System

  • Kim, Woo-Tae (Wireless Terminal Division, Samsung Electronics Co. LTD) ;
  • Kim, Jeong-Goo (Computer Science and Engineering, Pusan National University) ;
  • Joo, Eon-Kyeong (Department of Electronic Engineering, Kyungpook National University)
  • Published : 2007.03.31

Abstract

The cyclic redundancy check(CRC) code used to decide retransmission request in hybrid automatic repeat request(HRAQ) system can also be used to stop iterative decoding of turbo code if it is used as an error correcting code(ECC) of HARQ system. Thus a scheme to use CRC code for both iteration stop and repeat request in the HARQ system with turbo code based on the standard of cdma 2000 system is proposed in this paper. At first, the optimum CRC code which has the minimum length without performance degradation due to undetected errors is found. And the most appropriate turbo encoder structure is also suggested. As results, it is shown that at least 32-bit CRC code should be used and a turbo code with 3 constituent encoders is considered to be the most appropriate one.

Keywords

References

  1. S. Lin and D. J. Costello, Jr., Error Control Coding :Fundamentals and Applications, Englewood Cliffs, NJ: Prentice Hall, 1983
  2. F. Babich, E. Valentinuzzi, and F. Vatta, 'Performance of hybrid ARQ schemes for the LEO satellite channel,' Proc. IEEE GLOBECOM 2001, San Antonio, TX, vol. 4, pp. 2709-2713, Nov. 2001
  3. C. Berrou and A. Glavieux, 'Near optimum error correcting coding and decoding: Turbo-codes,' IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Oct. 1996 https://doi.org/10.1109/26.539767
  4. J. Hagenauer, E. Offer, and L. Papke, 'Iterative decoding of binary block and convolutional codes,' IEEE Trans. Inform. Theory, vol. 42, no. 3, pp. 429-445, Mar. 1996 https://doi.org/10.1109/18.485714
  5. P. Robertson, 'Illuminating the structure of parallel concatenated recursive systematic (TURBO) codes,' Proc. IEEE GLOBECOM'94, San Francisco, CA, pp. 1298-1303, Nov. 1994
  6. B. Kim and H. Lee, 'Reduction of the number of iterations in turbo decoding using extrinsic information,' Proc IEEE TENCON'99, Cheju, Korea, vol. 1, pp. 494-497, Sep. 1999
  7. A. Shibutani, H. Suda, and F. Adachi, 'Complexity reduction of turbo decoding,' Proc. IEEE VTC'99, Houston, TX, vol. 3, pp. 1570-1574, Sep. 1999
  8. N. Chandran and M. C. Valenti, 'Hybrid ARQ using serial concatenated convolutional codes over fading channels,' Proc. IEEE VTC 2001, Spring. Rhodes, Greece, vol. 2, pp. 1410-1414, 2001
  9. D. Divsalar and F. Pollara, 'Multiple Turbo codes for deep-space communications,' JPA TDA Progress Reports, vol. 42, pp. 66-77, May 1995
  10. D. Divsalar and F. Pollara, 'Turbo codes for PCS applications,' Proc. IEEE ICC'95, Seattle, WA, vol. 1, pp. 54-59, June 1995
  11. T. Ramavadran and S. Gaitonde, 'A tutorial on CRC computations,' Proc. IEEE MICRO'98, pp. 62-75, Aug. 1998
  12. G. Castagnoli, J. Ganz, and P. Graber, 'Optimum cyclic redundancy check codes with 16-bit redundancy,' IEEE Trans. Commun., vol. 38, no. 1, pp. 111-114, Jan. 1990 https://doi.org/10.1109/26.46536
  13. G. Castagnoli, S. Brauer, and M. Hemmann, 'Optimization of cyclic redundancy check codes with 24 and 32 parity bits,' IEEE Trans. Commun., vol. 41, no. 6, pp. 883-892, June 1993 https://doi.org/10.1109/26.231911
  14. 3rd Generation Partnership Project2, 'CDMA2000 high rate packet data air interface specifications,' 3GPP2 Technical Specification, C.S0024 V2.0, Oct. 2000