DOI QR코드

DOI QR Code

A Strategy Through Segmentation Using Factor and Cluster Analysis: focusing on corporations having a special status

요인분석과 군집분석을 통한 세분화 및 전략방향 제시: 특수법인 사례를 중심으로

  • Cho, Yong-Jun (National Federation of Fisheries Cooperatives Fisheries Economic Institute) ;
  • Kim, Yeong-Hwa (Department of Statistics, Chung-Ang University)
  • 조용준 (수협 수산경제연구원) ;
  • 김영화 (중앙대학교 자연과학대학 통계학과)
  • Published : 2007.03.31

Abstract

Corporations adopt a segmentation depends on the existence of target variables, in general. In this paper, for the case of no target variables, a strategy through segmentation is proposed for corporations having a special status based on the management index. In case of segmentation using cluster analysis, however, if one classify according to many variables then he will be in face of difficulties in characterizing. Therefore, after extracting representative factors by factor analysis, a segmentation method through 2 step cluster analysis is employed on the basis of these representative factors. As a result, six segmentation groups are found and the resulting strategy is proposed which strengthens prominent factors and makes up defective factors for each group.

세분화는 크게 목적변수의 유무에 따라 분석방법이 달라지게 된다. 본 논문은 특수법인의 경영지표를 바탕으로 목적변수가 존재하지 않을 경우의 세분화를 통해 전략방향을 도출하는 사례 연구를 제안하고자 한다. 군집분석을 통한 세분화의 경우, 많은 변수를 사용하여 분류를 하게 되면 군집별 특성화가 어렵게 된다. 따라서 군집의 특성을 잘 반영할 수 있는 대표적 요인변수를 요인분석을 통해 추출하고 이 대표요인을 바탕으로 2단계 군집분석을 통한 세분화를 고려하였다. 이를 통해 총 6개의 세분화 군집을 도출하고 각 군집 별 강점요인을 강화하고 약점요인을 보완하는 방향으로 전략방향을 설정하여 제안하고자 한다.

Keywords

References

  1. 남영우, 성은영 (2001). 인자분석과 군집분석에 의한 세계도시의 유형화, <한국도시지리 학회지>, 4, 1-12
  2. 박성현, 조신섭, 김성수 (2002). <한글 SPSS>, SPSS 아카데미
  3. 이종상 (2002). 지역유형구분을 위한 요인점수의 군집분석, <대한국토도시계획학회지>, 37, 191-199
  4. 임종호 (1993). 석회암 풍화산물에 대한 군집분석과 인자분석, <지리학연구>, 22, 73-90
  5. 조용준, 허준 (2006). 고객가치모형 별 마케팅전략: 백화점 화장품 고객을 중심으로, Journal of the Korean Data Analysis Society, 8, 335-348
  6. 최호현, 김선범 (2006). 요인분석과 군집분석을 이용한 용도지역의 특성과 유형분류,<한국도시지리학회지 >, 9, 127-136
  7. 허명회, 이용구 (2004). K-평균 군집화의 재현성 평가와 응용, <응용통계연구>, 17, 135-144
  8. Berry, M. J. A. and Gordon, L. (1997). Data Mining Techniques, John Wiley & Sons, U.S.A
  9. Chiu, T., Fang, D., Chen, J., Wang, Y. and Jeris, C. (2001). A robust and scalable clustering algorithm for mixed type attributes in large database environment, Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 263-268, San Francisco, California
  10. Hand, D. J. (1981). Discrimination and Classification, John Wiley & Sons, New York
  11. Kohonen, T. (1982). Self-organized formation of topologically collect feature maps, Biological Cybernetics, 43, 59-69 https://doi.org/10.1007/BF00337288
  12. Kovesi, B., Boucher, J. M. and Saoudi, S. (2001). Stochastic K-means algorithm for vector quantization, Pattern Recognition Letters, 22, 603-610 https://doi.org/10.1016/S0167-8655(01)00021-6
  13. Selim, S. Z. and Ismail, M. A. (1984), K-means type algorithms: a generalized convergence theorem and characterization of local optimality, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 81-87 https://doi.org/10.1109/TPAMI.1984.4767478
  14. Zhang, T., Ramakrishnan, R. and Livny, M. (1996). BIRCH: an efficient data clustering method for very large databases, Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, 103-114, Montreal, Canada

Cited by

  1. A Study on Classifying Algorithm of Disaster Recovery Resources Using Statistical Method vol.14, pp.1, 2014, https://doi.org/10.9798/KOSHAM.2014.14.1.49