DOI QR코드

DOI QR Code

Detection of Neuronal Activity by Motion Encoding Gradients: A Snail Ganglia Study

  • Park, Tae-S. (Dept. of Biomedical Engineering, Kyung Hee University) ;
  • Park, Ji-Ho (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Cho, Min-H. (Dept. of Biomedical Engineering, Kyung Hee University) ;
  • Lee, Soo-Y. (Dept. of Biomedical Engineering, Kyung Hee University)
  • Published : 2007.02.28

Abstract

Presuming that firing neurons have motions inside the MRI magnet due to the interaction between the neuronal magnetic field and the main magnetic field, we applied motion encoding gradients to dissected snail ganglia to observe faster responding MRI signal than the BOLD signal. To activate the snail ganglia in synchronization with the MRI pulse sequence, we used electrical stimulation with the frequency of 30 Hz and the pulse width of 2s. To observe the fast responding signal, we used the volume selected MRI sequence. The magnetic resonance signal intensity, measured with 8 ms long motion encoding gradient with a 20mT/m gradient strength, decreased about $3.46{\pm}1.48%$ when the ganglia were activated by the electrical stimulation.

Keywords

References

  1. Bodurka, J., Bandettini, P.A., 'Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes,' Magn. Res. Med., vol. 47, pp.1052-1058, 2002 https://doi.org/10.1002/mrm.10159
  2. Bodurka, J., Jesmanowicz, A., Hyde, J.S., Xu, H., Estkowski, L., Li, S.J., 'Current-induced magnetic resonance phase imaging,' J. Magn. Reson., vol. 137, pp.265-271, 1999 https://doi.org/10.1006/jmre.1998.1680
  3. Chu, R., de Zwart, J.A., van Gelderen, P., Fukunaga, M., Kellman, P., Holroyd, T., Duyn, J.H., 'Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response,' Neuroimage, vol. 23, pp.1059-1067, 2004 https://doi.org/10.1016/j.neuroimage.2004.07.003
  4. Konn, D., Gowland, P., Bowtell, R., 'MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: A model for direct detection of neuronal currents in the brain. Magn,' Res. Med., vol. 50, pp.40-49, 2003 https://doi.org/10.1002/mrm.10494
  5. Konn, D., Leach, S., Gowland, P., Bowtell, R., 'Initial attempts at directly detecting alpha wave activity in the brain using MRI ,' Magn. Reson. Imag., vol. 22, pp.1413-1427, 2004 https://doi.org/10.1016/j.mri.2004.10.012
  6. Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.-M., Brady, T.J., Rosen, B.R., 'Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,' in Proc. Natl. Acad. Sci., U.S.A., vol. 89, 1992, pp.5675-5679
  7. Hamalainen, M., Hari, R., Ilmuniemi, R.J., Knuutila, J., Lounasmaa, O.V., 'Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human,' Rev. Mod. Phys., vol. 65, pp. 413- 497, 1993 https://doi.org/10.1103/RevModPhys.65.413
  8. Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H., Ugurbil, K., 'Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,' in Proc. Natl. Acad. Sci., U.S.A., vol. 89, 1992, pp.5951- 5955
  9. Park, T.S., Lee, S.Y., Park, J-H., Lee, S.Y., 'Effect of nerve cell currents on MRI images in snail ganglia,' Neuroreport, vol. 15(18), pp. 2783-2786, 2004
  10. Park, T.S., Lee, S.Y., Park, J-H., Cho, M.H., Lee, S.Y., 'Observation of fast response of magnetic resonance signal to neuronal activity: a snail ganglia study,' Physio. Meas., vol. 27, pp.181-190, 2006 https://doi.org/10.1088/0967-3334/27/2/008
  11. Pell, G.S., Abbott, D.F., Fleming, S.W., Prichard, J.W., Jackson, G.D., 'Further steps toward direct magnetic resonance (MR) imaging detection of neural action currents: optimization of MR sensitivity to transient and weak currents in a conductor,' Magn. Res. Med., vol. 55, pp.1038-1046, 2006 https://doi.org/10.1002/mrm.20857
  12. Roth, B.J., Wikswo, J.P., 'The magnetic field of a single axon: a comparison of theory and experiment,' Biophys. J., vol. 48, pp.93-109, 1985 https://doi.org/10.1016/S0006-3495(85)83763-2
  13. Song, A.W., Takahashi, A.M., 'Lorentz effect imaging,' Magn. Reson. Imag., vol. 19, pp.763-767, 2001 https://doi.org/10.1016/S0730-725X(01)00406-4
  14. Tasaki I., Nakaye T., Byrne P.K., 'Rapid swelling of neurons during synaptic transmission in the bullfrog sympathetic ganglion,' Brain Res., vol. 331, pp.363-365,1985 https://doi.org/10.1016/0006-8993(85)91564-1
  15. Trubel H.K.F., Sacolick L.I., Hyder F., 'Regional temperature changes in the brain during somatosensory stimulation', J.Cereb. Boold Flow Metab., vol. 26, pp.68-78, 2006 https://doi.org/10.1038/sj.jcbfm.9600164
  16. Truong, T.K., Wilbur, J.L., Song, A.W., 'Synchronized detection of minute electrical currents with MRI using Lorentz effect imaging,' J. Magn. Reson., vol. 179, pp.85-91, 2006 https://doi.org/10.1016/j.jmr.2005.11.012
  17. Xiong, J., Fox, P.T., Gao, J-H., 'Directly mapping magnetic field effects of neuronal activity by magnetic resonance imaging,' Hum. Brain Mapp., vol. 20, pp.41-49, 2003 https://doi.org/10.1002/hbm.10124
  18. Xue, Y., Gao J-H., Xiong J., 'Direct MRI detection of neuronal magnetic fields in the brain: theoretical modeling,' Neuroimage, vol. 31, pp.550-559, 2006 https://doi.org/10.1016/j.neuroimage.2005.12.041