DOI QR코드

DOI QR Code

SUPER-REPLICABLE FUNCTIONS N(j1,N) AND PERIODICALLY VANISHING PROPERTY

  • Kim, Chang-Heon (Department of Mathematics Seoul Women's University) ;
  • Koo, Ja-Kyung (Korea Advanced Institute of Science and Technology Department of Mathematics)
  • Published : 2007.03.31

Abstract

We find the super-replication formulae which would be a generalization of replication formulae. And we apply the formulae to derive periodically vanishing property in the Fourier coefficients of the Hauptmodul $\aleph(j_{1,N})$ as a super-replicable function.

Keywords

References

  1. D. Alexander, C. Cummins, J. Mckay, and C. Simons, Completely replicable functions, In: Groups, Combinatorics and Geometry, Cambridge Univ. Press (1992), 87-98
  2. R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405-444 https://doi.org/10.1007/BF01232032
  3. C. J. Cummins and S. P. Norton, Rational Hauptmoduls are replicable, Canadian J. Math. 47 (1995), no. 6, 1201-1218 https://doi.org/10.4153/CJM-1995-061-1
  4. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkorper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272 https://doi.org/10.1007/BF02940746
  5. P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, 1983
  6. C. R. Ferenbaugh, The genus-zero problem for n/h-type groups, Duke Math. J. 72 (1993), no. 1, 31-63 https://doi.org/10.1215/S0012-7094-93-07202-X
  7. C. R. Ferenbaugh, Replication formulae for n/h-type Hauptmoduls, J. Algebra 179 (1996), no. 3, 808-837 https://doi.org/10.1006/jabr.1996.0038
  8. I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer- Griess monster with the modular function J as character, Proc. Nat. Acad. Sci. U. S. A. 81 (1984), no. 10, Phys. Sci., 3256-3260 https://doi.org/10.1073/pnas.81.10.3256
  9. I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the monster, Pure and Applied Mathematics, 134, Academic Press Inc., Boston, MA, 1988
  10. K. J. Hong and J. K. Koo, Generation of class fields by the modular function $j_{1,12}$, Acta Arith. 93 (2000), no. 3, 257-291
  11. N. Ishida and N. Ishii, The equation for the modular curve $X_1$(N) derived from the equation for the modular curve X(N), Tokyo J. Math. 22 (1999), no. 1, 167-175 https://doi.org/10.3836/tjm/1270041620
  12. S. J. Kang, Graded Lie superalgebras and the superdimension formula, J. Algebra 204 (1998), no. 2, 597-655 https://doi.org/10.1006/jabr.1997.7352
  13. S. J. Kang and J. H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgrbra, Prod. London Math. Soc. (3) 81 (2000), no. 3, 675-724 https://doi.org/10.1112/S0024611500012661
  14. S. J. Kang, C. H. Kim, J. K. Koo, and Y. T. Oh, Graded Lie superalgebras and superreplicable functions, J. Algebra 285 (2005), no. 2, 531-573 https://doi.org/10.1016/j.jalgebra.2004.11.005
  15. C. H. Kim and J. K. Koo, On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), no. 2, 291-297 https://doi.org/10.1017/S0004972700017755
  16. C. H. Kim and J. K. Koo, Generators of function fields of the moldular curves $X_1$(5) and $X_1$(6), (preprint)
  17. C. H. Kim and J. K. Koo, Arithmetic of the modular function $j_{1,8}$, Ramanujan J. 4 (2000), no. 3, 317-338 https://doi.org/10.1023/A:1009857205327
  18. C. H. Kim and J. K. Koo, Generation of Hauptmoduln of ${\Gamma}_1$(7), ${\Gamma}_1$(9) and ${\Gamma}_1$(10), (preprint)
  19. C. H. Kim and J. K. Koo, Self-recursion formulas satisfied by Fourier coefficients of some modular functions, J. Pure Appl. Algebra 160 (2001), no. 1, 53-65 https://doi.org/10.1016/S0022-4049(00)00077-3
  20. C. H. Kim and J. K. Koo, Self-recursion formulas of certain monstrous functions, J. Pure Appl. Algebra 171 (2002), no. 1, 27-40 https://doi.org/10.1016/S0022-4049(01)00116-5
  21. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, 97, Springer-Verlag, 1984
  22. M. Koike, On replication formula and Hecke operators, Nagoya University (preprint)
  23. S. Lang, Elliptic Functions, Graduate Texts in Mathematics, 112, Springer-Verlag, 1987
  24. J. Mckay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278 https://doi.org/10.1080/00927879008823911
  25. T. Miyake, Modular Forms, Springer-Verlag, 1989
  26. A. Neron, Modeles minimaux des varietes abeliennes sur les corps locaux et globaux, Publ. Math. I. H. E. S. 21 (1964), 5-128 https://doi.org/10.1007/BF02684271
  27. S. P. Norton, More on moonshine, In: Computational Group Theory, Academic Press (1984), 185-193
  28. R. Rankin, Modular Forms and Functions, Cambridge University Press, 1977
  29. J. P. Serre and J. Tate, Good reduction of abelian varieties, Ann. Math. (2) 88 (1968), 492-517 https://doi.org/10.2307/1970722
  30. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971
  31. G. Shimura, On modular forms of half integral weight, Ann. Math. (2) 97 (1973), 440-481 https://doi.org/10.2307/1970831
  32. J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer-Verlag, 1994

Cited by

  1. A level 16 analogue of Ramanujan series for 1/ π vol.456, pp.1, 2017, https://doi.org/10.1016/j.jmaa.2017.06.082
  2. Modularity of a Ramanujan–Selberg continued fraction vol.438, pp.1, 2016, https://doi.org/10.1016/j.jmaa.2016.01.065
  3. More on super-replication formulae (II) vol.22, pp.2, 2010, https://doi.org/10.1007/s11139-010-9234-5