References
- D. Alexander, C. Cummins, J. Mckay, and C. Simons, Completely replicable functions, In: Groups, Combinatorics and Geometry, Cambridge Univ. Press (1992), 87-98
- R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405-444 https://doi.org/10.1007/BF01232032
- C. J. Cummins and S. P. Norton, Rational Hauptmoduls are replicable, Canadian J. Math. 47 (1995), no. 6, 1201-1218 https://doi.org/10.4153/CJM-1995-061-1
- M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkorper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272 https://doi.org/10.1007/BF02940746
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, 1983
- C. R. Ferenbaugh, The genus-zero problem for n/h-type groups, Duke Math. J. 72 (1993), no. 1, 31-63 https://doi.org/10.1215/S0012-7094-93-07202-X
- C. R. Ferenbaugh, Replication formulae for n/h-type Hauptmoduls, J. Algebra 179 (1996), no. 3, 808-837 https://doi.org/10.1006/jabr.1996.0038
- I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer- Griess monster with the modular function J as character, Proc. Nat. Acad. Sci. U. S. A. 81 (1984), no. 10, Phys. Sci., 3256-3260 https://doi.org/10.1073/pnas.81.10.3256
- I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the monster, Pure and Applied Mathematics, 134, Academic Press Inc., Boston, MA, 1988
-
K. J. Hong and J. K. Koo, Generation of class fields by the modular function
$j_{1,12}$ , Acta Arith. 93 (2000), no. 3, 257-291 -
N. Ishida and N. Ishii, The equation for the modular curve
$X_1$ (N) derived from the equation for the modular curve X(N), Tokyo J. Math. 22 (1999), no. 1, 167-175 https://doi.org/10.3836/tjm/1270041620 - S. J. Kang, Graded Lie superalgebras and the superdimension formula, J. Algebra 204 (1998), no. 2, 597-655 https://doi.org/10.1006/jabr.1997.7352
- S. J. Kang and J. H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgrbra, Prod. London Math. Soc. (3) 81 (2000), no. 3, 675-724 https://doi.org/10.1112/S0024611500012661
- S. J. Kang, C. H. Kim, J. K. Koo, and Y. T. Oh, Graded Lie superalgebras and superreplicable functions, J. Algebra 285 (2005), no. 2, 531-573 https://doi.org/10.1016/j.jalgebra.2004.11.005
- C. H. Kim and J. K. Koo, On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), no. 2, 291-297 https://doi.org/10.1017/S0004972700017755
-
C. H. Kim and J. K. Koo, Generators of function fields of the moldular curves
$X_1$ (5) and$X_1$ (6), (preprint) -
C. H. Kim and J. K. Koo, Arithmetic of the modular function
$j_{1,8}$ , Ramanujan J. 4 (2000), no. 3, 317-338 https://doi.org/10.1023/A:1009857205327 -
C. H. Kim and J. K. Koo, Generation of Hauptmoduln of
${\Gamma}_1$ (7),${\Gamma}_1$ (9) and${\Gamma}_1$ (10), (preprint) - C. H. Kim and J. K. Koo, Self-recursion formulas satisfied by Fourier coefficients of some modular functions, J. Pure Appl. Algebra 160 (2001), no. 1, 53-65 https://doi.org/10.1016/S0022-4049(00)00077-3
- C. H. Kim and J. K. Koo, Self-recursion formulas of certain monstrous functions, J. Pure Appl. Algebra 171 (2002), no. 1, 27-40 https://doi.org/10.1016/S0022-4049(01)00116-5
- N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, 97, Springer-Verlag, 1984
- M. Koike, On replication formula and Hecke operators, Nagoya University (preprint)
- S. Lang, Elliptic Functions, Graduate Texts in Mathematics, 112, Springer-Verlag, 1987
- J. Mckay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278 https://doi.org/10.1080/00927879008823911
- T. Miyake, Modular Forms, Springer-Verlag, 1989
- A. Neron, Modeles minimaux des varietes abeliennes sur les corps locaux et globaux, Publ. Math. I. H. E. S. 21 (1964), 5-128 https://doi.org/10.1007/BF02684271
- S. P. Norton, More on moonshine, In: Computational Group Theory, Academic Press (1984), 185-193
- R. Rankin, Modular Forms and Functions, Cambridge University Press, 1977
- J. P. Serre and J. Tate, Good reduction of abelian varieties, Ann. Math. (2) 88 (1968), 492-517 https://doi.org/10.2307/1970722
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971
- G. Shimura, On modular forms of half integral weight, Ann. Math. (2) 97 (1973), 440-481 https://doi.org/10.2307/1970831
- J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer-Verlag, 1994
Cited by
- A level 16 analogue of Ramanujan series for 1/ π vol.456, pp.1, 2017, https://doi.org/10.1016/j.jmaa.2017.06.082
- Modularity of a Ramanujan–Selberg continued fraction vol.438, pp.1, 2016, https://doi.org/10.1016/j.jmaa.2016.01.065
- More on super-replication formulae (II) vol.22, pp.2, 2010, https://doi.org/10.1007/s11139-010-9234-5