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SUPER-REPLICABLE FUNCTIONS N(ji,v) AND
PERIODICALLY VANISHING PROPERTY

CHANG HEoN KiMm AND JA KyuNng Koo

ABSTRACT. We find the super-replication formulae which would be a gen-
eralization of replication formulae. And we apply the formulae to derive
periodically vanishing property in the Fourier coefficients of the Haupt-
modul N(j1,12) as a super-replicable function.

1. Introduction

Let $ be the complex upper half plane and let I'1(N) be a congruence
subgroup of SLy(Z) whose elements are congruent to ( §%) mod N (N =
1,2,...). Since the group I'; (V) acts on $ by linear fractional transformations,
we get the modular curve X;(N) = I'1(N)\H*, as a projective closure of the
smooth affine curve I'; (N)\ §), with genus g1 n. Here, $H* denotes the union of
% and PL(Q).

Ishida and Ishii showed in [11] that for N > 7, the function field K (X;(V))
is generated over C by the modular functions Xy (z, N)¥' N and X3(z, N)V,
where X, (z,N) = B Hﬁjz_ol ﬁ;zgg and ey is 1 or 2 according as N
is odd or even. Here, K, ;(2) is a Klein form of level N for integers r and s not
both congruent to 0 mod N. On the other hand, since the genus g1,y = 0
only for the eleven cases 1 < N < 10 and N = 12 ([25], (15]), the function field
K(X1(N)) in this case is a rational function field C(j; n) for some modular
function j; n (Table 3, Appendix).

The element ( {1 ) of I'y(V) takes z to z + 1, and in particular a modular
function f in K(X1(N)) is periodic. Thus it can be written as a Laurent series
in ¢ = ¥ (2 € §), which is called a g-series (or g-expansion) of f. We
call f normalized if its g-series starts with ¢~ ! + 04 a1q + azg® +---. By a
Hauptmodul t we mean the normalized generator of a genus zero function field
K(X1(N)) and we write t = ¢! + 0+ Y, Hiq" for its g-series.

For a Fuchsian group T, let T denote the inhomogeneous group of T' (=
I'/ £1I). Let To(N) be the Hecke subgroup given by {( ¢4 ) € SLy(Z) | ¢ =0
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mod N}. Also, let t = N(j1,n) be the Hauptmodul of I'1(N) and X,(t) be

a unique polynomial in t of degree n such that X,(t) — 2¢™" belongs to the

maximal ideal of the local ring C[[g]]. Polynomials with this property are known

as the Faber polynomials ([5], Chapter 4). Write X,,(t) = 2¢™"+ > Hmnq™.
m>1

When T'y(N) = To(N), N(j1,n) becomes a replicable function, that is, it
satisfies the following replication formulae

(%) H,p,=H,q whenever ab= cd and (a,b) = (c,d)

([1], [3], [22]). Given a replicable function f the n-plicate of f is defined itera-
tively by

f(n)(nz) __ Z/ f(a) (?jl) + an(f)
0Z5la

where the primed sum means that the term with a = n is omitted ([3]). We
call f completely replicable if f is a replicable function with rational integer
coeflicients and has only a finite number of distinct replicates, which are them-
selves replicable functions. According to [1] there are, excluding the trivial
cases ¢~ + aq, 326 completely replicable functions of which 171 are monstrous
functions, i.e., modular functions whose g¢-series coincide with the Thompson
series Tg(q) = D,z Tr(9|Va)q™ for some element g of the monster simple group

M whose order is approximately 8 - 10°3. Here we observe that V = @V, is
neZ
the infinite dimensional graded representation of M constructed by Frenkel et

al. ([8], [9]). Furthermore, in [3] Cummins and Norton showed that if f is
replicable, it can be determined only by the 12 coefficients of its first 23 ones.

If T;(N) # To(N), unlike those replicable functions mentioned above, we
show in §3 that the Fourier coeflicients of X, (¢) with t = N(ji,n) (N #7,9)
satisfy a twisted formula (10) by a character ¥ (see Corollary 11). Here we
note that when we work with the Thompson series, it is reduced to replication
formulae in (*) by viewing ¢ as the trivial character. Thus in this sense it gives
a more general class of modular functions, which we propose to call N(j1,n) a
super-replicable function.

There would be certain similarity between some of replicable functions and
super-replicable ones as follows. We derived in {19] the following self-recursion
formulas for the Fourier coefficients of N (j;,n) without the aid of its 2-plicate
when N =2,6,8,10,12: for k > 1,

Hop_
Hyp 1 = _22"& +2 Z HyjHyk—2j—2
1<i<k—1
H Hai—” H;H.
+a- 4k—2_T_ Z jilag—j-2

1< <2k—2
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Hyo= — - Hyp—2 ~ Z HjHsok—j-1)
1<j<2k—1

2
Hypyr = —b—[;—k +2 Z HojHyp—oj + o - Hye + H;k - Z H;Hyk—;
1< <k 1<5<2k
Hypyo= — B Hyo — Z H;Hy0r—j),
1<5<2k

where a = —A(j1,v)(X/2) and 8 = ~N(j1,v)(5r)- Furthermore, we ver-
ified in [20] that the above recursion can be also applied to 14 monstrous
functions of even levels (including N (j;,2) and N (j1,6)) which are Thompson
series of type 2B, 6C, 6F, 6F, 10B, 10E, 14B, 18C, 18D, 22B, 30C, 30G,
42C, 46 AB (these are all replicable functions) and one monster-like function of
type 18e (for the definition of monster-like function, we refer to {6]). Therefore
the Hauptmoduln mentioned above which have self-recursion formulas can be
determined just by the first four coefficients Hy, Hy, Hz and Hy without the
aid of 2-plicate. What is more interesting would be the fact that there seems to
be a connection between super-replicable functions and infinite dimensional Lie
superalgebras. That is, considering the arguments from Borcherds [2], Kang
[12] and Koike [22] we have believed that the super-replication formulae in (10)
might suggest the existence of certain infinite dimensional Lie superalgebra
whose denominator identity implies such formulae. Meanwhile, Kang et a}:
{14] recently showed that there is indeed such a Lie algebra as follows. Let T’
be a free abelian group of finite rank and T’ be a countable (usually infinite)
sub-semigroup in T such that every element in I’ can be written as a sum of
elements of I' in only finitely many ways. We consider a I' x Zy-graded Lie
superalgebra ([13]) with a product identity of the form

1
H exp | — Z El/(k)(a’ a)EF@a) | =1 Z ¢(B,b)EBD)

(e,a)ET X Zso k>1 (B,b)ETXZ,
where v(*)(a, a), ((8,b) € Z and E?+®) are the basis elements of the semi-group
algebra C[T' x Zy] with the multiplication given by EX®) Bub) = pOtmatd)

for \,p € T and a,b € Zy. When rank(T) = 2, T=Z x Z and T'= Zs X Zso,
they proved that one can get the product identity of the form

o0

1 oo
— — (k) km _kn — _ m .n
H exp Zku (m,n)p™"q =1 Z_ ¢(m,n)p™q
m,n=1 k>1 m,n=1
with p = E10 and ¢ = —E©D | from which one derives a characterization

of the super-replication formulae. Moreover, they further computed the su-

pertraces of the Monster Lie superalgebras associated with super-replicable
functions.
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Lastly, as an application of super-replication formulae we consider the follow-
ing periodically vanishing property. Many of monstrous functions, for example,
Thompson series of type 4B, 4C, 4D, 6F, 8B, 8C, 8D, 8E, 8F, 9B, etc have
periodically vanishing properties among the Fourier coeflicients (see the Table
1 in [24]). This result must be known to experts, but we could not find a
reference. Hereby we describe it in Theorem 13. Meanwhile, as for the case
of super-replicable functions, we see from the Appendix, Table 4 that only the
Haupmodul A (j1,12) seems to have such property. To this end, we shall first
derive in §4 an identity (24) which is analogous to the “2*-plication formula”
([7], [22}) satisfied by replicable functions. And, combining this with the super-
replication formulae we are able to verify that the Fourier coefficients H,, of
N (j1,12) vanish whenever m =4 mod 6 (Corollary 19).

Through the article we adopt the following notations:

e Sr,(n) the set of I'y(IV)-inequivalent cusps
o g = e27riz/h, z2€H
fleany=7(8)
cd
f(z) = g(2) + O(1) means that f(z) — g(z) is bounded
as z goes to 100.

2. Hauptmodul of T';(12)

In this section we investigate the generalities of the modular function j; 12
which is under primary consideration and construct the Hauptmodul N (j1,12).
We also examine some number theoretic property of AV (j1,12). As for more
arithmetic properties, we refer to [10].

Lemma 1. Let 2 and ‘Z—,I be fractions in lowest terms. Then % is T'1(N)-
equivalent to & if and only if =( ‘C‘f )= (") mod N for somen € Z.

!

Proof. Straightforward. g

Using the above lemma we can check that the cusps
0, 1/2, 1/3, 1/4, 1/5, 1/6, 1/8, 1/9, oo, 5/12

are I'1 (12)-inequivalent. But from [15] we know that the cardinality of ST, (12)
is 10, whence

SF1(12) = {07 1/2a 1/3> 1/4a 1/57 1/67 1/87 1/97 o0, 5/12}
For later use we are in need of calculating the widths of the cusps of I'1(12).

Lemma 2. Let a/c € P1(Q) be a cusp where (a,c) = 1. Then the width of
a/c in X1(N) is given by N/(c,N) if N # 4.

Proof. If N | 4, the statement is obvious. Hence, we assume that N does not
divide 4, i.e., N % 1,2,4. First, choose b and d such that ( ¢% ) € SLy(Z). Let
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h be the width of the cusp a/c. Then h is the smallest positive integer such

that -
(OGN ) e

1—cah *
( —c2h 1 +cah) € =M ().

If (1:C§Zh * ) is an element of —I'1(N), by taking trace 2 = —2

Thus we have

1+ cah

1—cah *
mod N; hence N | 4. Thus when N # 1,24, ( _h 1+cah> € T1(N).

This condition is equivalent to saying that
N N N
h€-——7 Z = Z.
(c?,N) M (ca,N) (¢, N)

We then have the following table of inequivalent cusps of I'; (12):

Table 1.
cusp oo | 0|1/2[1/3|1/4]1/5|1/6[1/8|1/9]|5/12
width | 1|12 6 4 3| 12 2 3 4 1

Recall the Jacobi theta functions 6s, 63, and 8, defined by

n+1)?
02(2) = qu 2

neZ
b3(2) = g5
neEL
04(2) = 3 _(-1)"q5
neEL
for z € $. We have the following transformation formulas ([28] pp.218-219).
@ Ba(z+ 1) = e3™0,(2)
(2) 05(z + 1) = 04(2)
(3) 04(z + 1) = 03(2)
@ b (~1) = (i) H)
5) b (-1) = (i) st
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Lemma 3. Let k be an odd positive integer and N be a multiple of 4. Then
for F(z) € M%(FO(N)) andm > 1, F(mz) € M%(I‘O(mN),Xm) with xm(d) =
(%) and (d,m) =1.

Proof. [31], Proposition 1.3. O

Put j1’12(z) = 03(22)/93(621)

Theorem 4. (a) 05(22) € M, (To(4)) and 63(62) € M, (To(12), x3)-

(b) K(X1(12)) is equal to C(j1,12(2)). ji,12 takes the following value at each
cusp: ji12(00) = 1, 51,12(0) = V/3, jmg(%) = 0 (a simple zero), j1,12(%) =1,
J12(3) = V3i, j1,12(3) = =3, j112(3) = oo (a simple pole), ji,12(3) =
—V3i, j112(3) = =i, ji,12(F) = —1.

Proof. For the first part, we recall that ([21], p.184)
63(22) € My (To(4)).

Then by Lemma 3 we immediately get that

83(62) € My (To(12), x3)-
By the assertion (a), it is clear that ji 12(2) € K(X1(12)). Thus for (b), it is
enough to show that 71 12(2) has only one simple zero and one simple pole on
the curve X;(12). As is well-known, 63(z) never vanishes on §). Hence we are
forced to investigate the zeroes and poles of 71,12 at each cusp of I'1(12). Let
§=(1%)andT=(§})

(i) s = oo:

. . 83(22) . 142¢+2¢*+---
.71,12(00) 2_1520 95(62) qli% 1+42¢3+2¢12 + -+

(ii) s =0:

. . 03(22)
O — 1
ji,12(0) = lim 03(62)| ¢

/—3Z §.(2
—am VBB
z=ico /=i 05(5)
= 3.

(iil) s = %: We Observe that (ST~2S)oo = ( 1o )oo = %
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Considering the identities

63(22)%|(s), = =163 (-

| Do
(SR
2o
Il
N
L
—~—
/?
| S
N—
<>
w
N
N | N
SN’
—
[
on
>
—
(3
e

D
w
TN

1 z2\2
63(22)%| 5721, = —501(3) v @

s = — 57 H(~2i2)}6:(22))? by (6)

&

TN
DN NP
X}

)
b
=
il

|
|
N = DN = N
Sy
w
N
NN NN NN

03(22)?|s7-25), = —

|

|
o)

(&)
—~
S

™
~—
l\')

we get that
03(22)%|,—y = Jim 03(22)|js7-25), = JLim —6(22)?
— hm __22 q2(1+q2+q6+q12+)2
2100

(since 02(2) = 2qs(1 +q+g>+---))
= 0 (a triple zero).

On the other hand

2 —_1- z2
QN1 0y =582 30y (<10
1
3
1
3

so that 63(62) has a simple zero at . Thus Itz E 32 has a double zero

at %—, whence 71,12 has a simple zero at 5
(iv) s = 3: (ST3S)oo = . First we recall that

_ s 3)
S_x/ﬁ %02) by (5).

and 03(22) = 3(03(3) + 64(3)). From
(2 )+93( ) and 63(%) = 62(32) +

Observe that 02(2z) = 1(93( ) — 04(2))
these identities we can write 03(%) = 02
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03(%2). Then we have that

03(22’) _ ) 02(22) +93(2Z)
03(62) gp-s Vs 02(32) + 65(32) T-3
~ V3. (6_3)69 222) +0522) 1y (2) and (3),
(g o) e
— 3. 202(2Z)+03(22)
—ié)g(%z) + 03(%2)
and
03(62)| gp-sg v3 —i62(22) + 63(22)| 4

e i0u(3) +6(3)
= V3 —iv/304(32) + V305(32)

by (4) and (5)

which goes to EL = { as z — 00, so that

1+1
(N,
J1,12 3]~ *%

(v) s =1: (19 )oo = 1. In this case we use the following well-known fact
from [21] 148 : For v € I'p(4) and z € 9,
—1
7 vV ez + d,

where ©(z) = 03(2z). Then

62 __e(ia  _  e(il)?)

%569 (10) O(31) (1) B(33) (1 )2

. Viz +1 6(z)
(3)iy/4-52+30((5%7)2)

=3 _6()
e

which tends to v/3i when z goes to ico. Therefore

. 1 .
J1,12 (Z) = \/51-
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(vi) s = L: Because ( §; 1) (97 ) sends oo to £,

351

. 1N im 03(22)
J112 (5) B zl—»ioo 03(6z)( 51 )( 0 -1 )
= lim —93(2Z> a
= lim 63(6@((1)_01) by (a)
= — j1,12(0) = —V3.
(vii) s = &: Observe that (ST8S)oo = ;.
Considering the identities
63 22) i . 93(%)
565) .=V ) WO
0622 _ 5 66 a8 L o
35067 are — V3 35| e V3 ) ™ (2) and (3)
5(22) _ = @) _ g V2iz 0:(22)
93(63) ST—68 B \/g 04(%) S - \/g v —6iz 02(62) by <6),

we have that

(1 o 6a(22) o 8a(22)
T32\§ ) T 2000 64(62)| gposg  s—ico 62(62)
oy 2RO+ 4

T 61 415 1 ...

eico 2 8(1+ %+ ¢+ )

( since B3(2) =2 gs(1 +q+¢* +-

Thus by Table 1, j; 1 has a simple pole at .

(viii) s = : Because ( 7 ) (19

A
e s)- (%5
— lm _93(22)
2—100 63(62’) ( }1 (1) )

) 1 :
= —JL12 <Z) = —/3i.

) sends oo to 3,

im 93 (22)
z—ico 03(62)

by (a)

)
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(ix) s = 5: Because { 5 15 ) (1) sends oo to 3,

12| 7 ) = lin
9 z—ioo 03(62) (22)(19)

03(22)
z—1>11noo _03(62) ( % (1) ) by (a)

. 1y _
= — N2 3) = z.

) i 52

i
Z2—1%00 93(62) ( 152 g )
o 93(2Z)
B z—l>rznoo 93(62) Y (a)
= —1

i

We will now construct the Hauptmodul N (jy,12) from the modular function
J1,12 mentioned in Theorem 4.

2 o 205(62)  2(1+2¢°+2¢"2 4247 +---)
Ji12(2) =1 63(22) — 03(62)  2q — 23 + 2¢* + 2¢° — 2¢*2 + - -

1
=E+q+q2+q3—q6—q7—q8—q9+qn+2q12+--~,

which is in ¢7'Z[[g]]. From the uniqueness of the normalized generator it
follows that N(j; 12) = ~—2—. By Theorem 4-(b) we have the following table:

Jii2—1°

Table 2. Cusp values of j1,12 and N'(j1,12)
s 5o 0 727 1/3 174 /5 1/6 1/8 175 | 5/12
J1,12(s) 0 i V3i -3 oo —V/34 —i —1
N(@G1,12)(3) { oo | VB4+1 | =2 | —1—34 ”%Ei 1-v3 | o :%@ 144} —1

S

Theorem 5. Let d be a square free positive integer and t = N(j1 n) be the
normalized generator of K(X1(N)). Let s be a cusp of T'1(N) whose width is
he. Ift € ¢~1Z[[q]] and HSESr*l(N)\{OO} (t(z) — t(s))P is a polynomial in Z[t),
then t(T) is an algebraic integer for T € Q(v/—d) N H.

1
Proof. Let j(z) = p + 744 + 196884q + - - - , the elliptic modular function. It

is well-known that j(7) is an algebraic integer for 7 € Q(v/—d) N $H ([23], [30]).
For algebraic proofs, see [4], [26], [29] and [32]. Now, we view j as a function
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on the modular curve X;(N). Then j has a pole of order h, at the cusp s. On
the other hand, #(z) — ¢(s) has a simple zero at s. Thus

ix I e -t
s€Sr, (ny~{oo}

has a pole only at co whose degree is uy = [['(1) : T1(N)], and so by the
Riemann-Roch Theorem it is a monic polynomial in ¢ of degree py which we
denote by f(t). Since Hsesrl(m\{w} (t(z) — t(s))" is a polynomial in Z[t] and
J, t have integer coefficients in the g-expansions, f(t) is a monic polynomial in
Zt] of degree pn. This shows that ¢(7) is integral over Z[j(7)]. Therefore t(7)
is integral over Z for 7 € Q(v—d) N $. O

Corollary 6. For 7€ Q(v/—d)N$, N(j1,12)(7) is an algebraic integer.
Proof. N'(j1,12) has integral Fourier coefficients. And by Table 1 and 2,

IT @@ -t

SEST (12)~ {00}
= -2t (¢t +2)° (P +2t+2)* (P +t+1)3 2 (t+1) €[

Now the assertion is immediate from Theorem 5. d

3. Super-replication formulae

Let A™ be the set of 2 x 2 integral matrices ( 24 ), where a € 1+ NZ, c €

NZ, and ad — bc = n. Then A™ has the following right coset decomposition:
(See [21], [25], [30])

n__1 )
n a 1
(M) A = L;J L—Jo I'1(N)oa (0 %> ,
(a,N)=1

where o0, € SLy(Z) such that 0, = (9;"0) mod N. Let f(z) be a modular
function with respect to I';(IN). For brevity, let us call it f(z) is on T'1(N).
For f € K(X;(N)) we define an operator U,, and T,, by

flunzn_lifl(“)

=0
and
n_y
flo,=n™ 3 > fl,aiy
aln i=0 a
(a,N)=1

Lemma 7. For f € K(X1(N)) and vo € To(N), (fI1.)lo = (flo)lz, for any
positive integer n. In particular, f|r, is again on I'1(N).
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Proof. First we claim that
ATy = A" for yo = (7% ) € To(IV).
Let (2%) € A" Then
P (2)w=(%72)(25)(58)=(53) mod N.
Hence o 'A™yy C A™ so that A™y, C v%A™. By the same argument we

can show the reverse inclusion. We note that

L]

o= U Une(§ 3)w
aln 1=0 a
(G,N):l
and
-1 ‘
n a 1
wat= U Y wnive. (5 %)
(a,N):l
a1 .
= U UFl(N)’Yan (g ;) because I'; (N) < To(N).
aln 1=0 a
(a,N)=1

Here we note that o, ( 0 % ) ~o’s are the matrices appearing in the definition of

(f17.)]vo and Yoo, ( o é )’s are those appearing in the definition of (f|,)|r,-
Now the assertion follows. 0

For a positive integer N with g1 v = 0, we let ¢ (resp. to) be the Hauptmodul
of T'1(N) (resp. To(N)). And, we write X,,(t) = 2¢7" + > m>1 Hmng™ and
Xn(tO) = %q—n + Zle hm,nqm~

Lemma 8. For positive integers m and n, Hy, p = Hp . and b = hnm.

Proof. Let p = €*™%¥ and q = €*™** with y,z € . Note that X,(¢) can be
viewed as the coefficient of p"-term in —logp — log(t(y) — t(z)) ([27]). Thus
H,, , becomes the coefficient of p"¢™-term of

— logp — log(t(y) — t(2))
= —log(1 - p/q) +log(p~" — ¢7) — log(t(y) — t(2))
1 ,
=>"=(p/9)' -~ F(p,9),
izl "
_l—q_1+21>1 Hi(pi_qi)
p—l__q—l
= F(q,p), which implies that H,, , = Hp . Similarly if we work with to
instead of ¢, the identity hp, , = Ay, follows. O

. We then come up with F(p, q)

where F(p,q) = log (p
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Theorem 9. For positive integers n and | such that (n,N) = {I,n) =1,
Xl(t)lTn = Xln<t)l°'n + G

where ¢ is a constant. In particular,

tlTn = Xn(t>‘an +ec.

Proof. Since X;(t) has poles only at I';(IN)oo, the poles of X;(t)|r, can occur

N1
only at ( 65 ) 0, T (N)oo, where a and i are the indices appearing in the
definition of 7;,. On the other hand, we have

N o
( 01 ) 0, 'T1(N)oo = n™* ( e ) 0o T {N)oo
= ( % ‘lf)oa_ll“l(N)oo.
Let v be an element in Ty (N). Then
(52 )oa Moo= (577) (5,5 ) (§1)e0 mod N
Z (% Yoo = RENM
Nk

for some k,m & Z. If there exists an integer z > 1 with z | (n+ Nm, Nk), then

z must divide det [( % )oa'y] = n. In this case z f N because (n,N) = 1.
S\ -1

Therefore ( S ) 0, yo00 is of the form ~ypoo for some v € I'o(N). Now

we conclude that X;(t)|r, can have poles only at ypo0 for some vy € To(V).

By Lemma 7,

X ()1 ) e = n(Xi(t) o)l T,

—1
a

=3 b, (5 1) = O HEO o 02)
aln i=0 a aln

= 3 ZXBho)loulvs (02) + Xilnye, (n2).
aln
a#n

Here we note that

Z %(Xl(t)Ho)laah/% (az) = O(1).

aln

aF#n

In fact, if yoo, & £I'1(N), it is clear that (X;(t)]g)]s. U= has a holomorphic
g-expansion. Otherwise

Xi(®)lrooatia = X1(D)|va

= (I"Y¢7" + terms of positive degree )|y, = O(1)

n
a



356 CHANG HEON KIM AND JA KYUNG KOO

because (I,n) = 1. Now we have

(8) Xy ) lve = Xi(t)lyoo, (n2) + O(1).

This implies that X;(t)|r, has a pole at ypo0 if and only if ygo, € £I'1(N), that
is, y0 € £I'1(N)o,~1. Hence X;(t)|r, has poles only at cusps I'1(N)o, 'oo.
In this case we derive from (8)

X (t)|1,) o1 = Xi()lo, 16, (n2) + O(1) = 171¢™" + O(1).

Thus (X;(t)|7.)|e.-1 = (n)"1g™"+0(1) and (Xi(t)|r,)|s,-: has polesonly
at cusps 6,1 (N)o, “1oo = I'1 (N)oo. On the other hand, Xj,,(¢) has poles only
at I'1(N)oo too and X, (t) = (in)~1q~!" + O(1). Therefore (X;(t)|T,)|s, -1 =
Xin(t) + ¢ for some constant c. Then we have X;(t)|7, = Xin(t)|s, + ¢, as
desired. O

Corollary 10. Let N be a positive integer such that the genus g1 N is zero
and [To(N) : T1(N)] < 2. For positive integers n,l and m such that (n, N) =
(I,n) =1, we have

Z e™? {w(e) (2H%ﬂyl - h_v;gl,l) + h—':,n,l}
e|(m,n)
e>0

= 1/7(71) (2Hm,ln - hm,ln) + hm,ln,
where v : (Z/NZ)* — {1} is a character defined by

1, ife=+1 mod N
Y(e) = .
-1, otherwise.

Proof. Tt follows from Theorem 9 that

(9) &wn=§:f%mm@wgm=xmm%+man

eln
e>0

Note that for each positive integer r,

2X,(t), ife=+1 mod N
X,(to) + constant, otherwise.

X ()]s, + X (t) = {

In the above when e is not congruent to £1 mod N, X,(¢)|,, + X,(t) is on
T'o(N) and has poles only at To(N)oo with »—1¢~" as its pole part, which
guarantees the above equality. We then have

mmm=gwmmmyxmm+m%n+mmMn
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Now (9) reads

> e LX) — Xilto)) + Xlto)Hluy (e2)

eln
e>0

1
= §{¢(n)(2Xln (t) - Xln(to)) + Xin (to)} -+ constant.
Comparing the coeflicients of ¢™-terms on both sides, we get the corollary. [

gorollary 11. Let N be a positive integer such that the genus g1 n is zero and
[To(N) : T1(N)] < 2. For positive integers a,b, ¢, d with ab = cd, (a,b) = (c,d)
and (b,N) = (d,N) =1,

(10) Hap = Y(bd)Hc g + whqw

Proof. In Corollary 10 we take n = b, [ = 1 and m = a. Then it follows from
the conditions and the replicability of A, ,, that

¢(b)(2Ha,b - ha,b) = ¢(d)(2Hc,d - hc,d)'

Now the assertion follows. O

Corollary 12. Let N be a positive integer with gy y = 0 and [To(N) : T1(N)] =
2. If (mn,N)=1 and mn £ +1 mod N, then huyn=2Hpn.

Proof. In Corollary 11 we take a = m,b = n and ¢ = n,d = m. The condition
that ¥(mn) = —1 implies

Hm,n = —IIinm + hn,m
= — Hppn+ hmyn by Lemma 8.
This proves the corollary. O

4. Vanishing property in the Fourier coefficients of N (j1,12)

As mentioned in the introduction, many of the Thompson series have peri-
odically vanishing properties among the Fourier coefficients. Now we will give’
a more theoretical explanation for these phenomena.

Let T, be the Thompson series of type g and I'; be its corresponding genus
zero group. To describe I'y we are in need of some notations. Let N be a
positive integer and @ be any Hall divisor of N, that is, @ be a positive divisor
of N for which (Q, N/Q) = 1. We denote by Wa,v a matrix ( §% &, ) with
det Wo vy = @Q and x,y,2z and w € Z, and call it an Atkin-Lehner involution.
Let S be a subset of Hall divisors of N and let I' = N + S be the subgroup of
PSLy(R) generated by To(N) (= {(25) € SLz(Z) | c=0 mod N}) and all
Atkin-Lehner involutions Wg n for Q € S. For a positive divisor h of 24, let n
be a multiple of h and set N = nh. When § is a subset of Hall divisors of n/h,
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we denote by I'g(n|h) + S the group generated by ( &9 ) o To(n/h) o ( ko

and (&9 ) o Wonmo (p9) for all Q € S. If there exists a homomorphism
A of Ty(n|h) + S into C* such that

(11)  AMTo(N)) =1,

(12) )\(( 11/h )) — e—2m‘/h7

0 1

2mi/h ifn/hes
13) M(19)={%,. ’
(13) ((21)) {e—zm/h if n/h ¢S,

(14) X is trivial on all Atkin-Lehner involutions of I'g(N) in T'g(n|h) + S,

then we let n|h + S be the kernel of A which is a subgroup of I'g(n|h) + S of
index h. Ferenbaugh ([6]) found out a necessary and sufficient condition for the
homomorphism A to exist and calculated the genera of groups of type njh+ 5.
All the genus zero groups of type n|h + S are listed in [6], Table 1.1 and 1.2.
Now we have the following theorem.

Theorem 13. Write T,(q) = ¢ >+, o, cg(m)g™.

(i) If Ty = To(N) and h is the largest integer such that h | 24 and h? | N,
then cq(m) =0 unless m = —1 mod h.

(ii) IfT'y = N + S and there exists a prime p such that p?|N and pt Q for

allQ € S, then cg(m) =0 whenever m =0 mod p.

- (i) IfTy =nlh+ S, then cg(m) =0 unlessm = —1 mod h.
Proof. (i) Note that (} hII ) belongs to the normalizer of I'o(N). Thus
Tg|( 1 hII ) has poles only at co, which is a simple pole. This enables us to

write Ty|, | ,-1\ = ¢ T, for some constant c¢. By comparing the coefficients

01
-of ¢™-terms on both sides, the assertion follows.
(ii) From Corollary 3.1 [22] it follows that Ty|y, = 0. Thus (ii) is clear.
(iii) Considering the identity in [22], p.27 we have T,(z + 1/h) = e~2¢/h.
Ty(z). Then Ty(q) = ¢ + 3 gcpez ¢o(lh — 1)g"~1, which implies (iii). O
Unlike the cases of Thompson series, when we handle the super-replicable

.function N(j1,12) we can not directly use the ingredients adopted in Theorem
13. Therefore we start with

Lemma 14. For (2%) € I'y(12), j1112|< at) = () j1,12. Here (3) denotes

the generalized quadratic residue symbol.

Proof. Immediate from Lemma 3 and Theorem 4. 0
We fix N = 12 and let ¢ denote the Hauptmodul A (jq,12) in what follows.

Lemma 15. For ( 2%) € I'x(24),

(ol ag) = (D5 (73 ) - o)y,

a+ 5
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where x = (<L) is the Jacobi symbol and (tlu,),, is the twist of t|u, by x ([21],
p.127).

Proof. From [21], p.128 we observe that

(15) (tlon)y = ﬁ (t‘Uz (“ 31) ~ s (’” %)>
B \/%Iie(%@x <-71> <t|U2 i %> G3i

It then follows from [19], Corollary 28 that

((3) e

If we compare the coefficients of g-term on both sides, we get Hy—t (%) -Hy = 0.
And, substituting H; = 1 and Hy = 0 we get ¢ (3) = 0. Now

1 ji12-—1
16 tly, = - ===~
(16 B S

Then for (25 ) € T'y(12)
(17) tHo, + =) .y | _ L3, by Lemma 14
Uz 5 (‘;2)“2]1’12(‘22)_2 d Jii12 by

- () -) ()

since ad = 1 mod 12. Let (%) € To(24). For i = 1,3, we consider

(32)(2h)=(*atiettid) Since (4da+ic,4c) divides det ( 4o/ 401 ) we

must have (4a + ic,4c) = 4; hence (a + ic/4,c) = 1. Thus we can choose inte-

gers x; and y; such that v; = (2714 20 ) € SLy(Z). Write v, ($5)(25) =

( g i ) for some integer z;. Then we have

(§a)(2g)=(ey)(5%)
for some integer z;. Comparing (1,2)-component on both sides we get
4b +id = (a + tc/4)z; + 4x;.
Thus i¢d = (a + ic/4)z; mod 4. Then
z; = (a+1ic/4)id mod 4,
2 _

because n“ =1 mod 4 for every odd integer n

Eaid+i2-§~d mod 4

Ei-f‘g'd mod 4, dueto ad=1 mod 4

=i+ 6c;d mod 4, where we write ¢ = 24¢;.
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Therefore we derive that for (28 ) € To(24),
vV—4- (tiUz)X |( ab
cd
= Z <__1> (tle"'%)l(zli)(ab) by (15)
ic@azyx N " 047\ cd
S C I T
ic@anyx N ¢ ¢ 04

1e(zz/z;z)x <_71> (a——%?;c_/él) (tle + %) i( D) by (17).

Now if we set ¢ = 24¢; as before, then we have

V=4 (tly,), |(ab)

= Z - t|U2 ) | 4 i+6c1d
i€(2/42) < ) (a+6c z> ( (3%)

= U, + 4 i+6c1d
a + 6cy e(Z/4Z)>< 0 4 )

I

since a + 6¢1i =a +6¢; mod 12

- (=) 2, (F) ) (7o)
(a+6c1 ie(B]az)~ 1+ 6cd i+ 6¢1d

X (tle + %) |( 4it6erd )
(-1 ( 3 ) V- (o),

a+ 601
because () (ngld) = (i2+7321id) = (m) = (=1)2id = (=1)* and
i+ 6¢1d runs over (Z/4Z)*. This completes the lemma. O

Lemma 16. (i) For each k > 1, we put

o) = (0 5 (X0 - X (4 3) )

Then g belongs to K(X1(24)).
(ii) For (28) € To(24) and k > 1,

In particular; (t|U2k)X lies in K(X;(24)).
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Proof. First we note that for n | N, T,, = U,. Here, by n | N°° we mean
that n divides some power of N. To show g € K(X;(24)), we observe that

9= (1" (Xar (1)(2) = Xox (1)1 (22)) -
Then using Lemma 7 we obtain that g € K(X;(24)). For ( 2% ) € I'y(12),

(fe+3) 1 20) = (03 b2t
(18) =t 3) I )U“ by Lemma 7
=< )(t|U2 ;) (oA 17)
1)

Now we can proceed in the same manner as in the proof of Lemma 15. D
Lemma 17. For k > 1,

32! ifk=
(i) (t|U2k)|( _{2% +0(), ifk=1

)7

¢ 0(1), otherwise.
o), =1
) gt o), if k=2
(@) (o) l1oy=19" Cig, —1+0(1) ifk=3
(¥ g g T 0, k>4

Proof. (i) First, tl( 10) is holomorphic at oo because t has poles only at the
6
cusps I'; (12)o0. Now for k& > 1,

(tluzk)l(ég)= (tlu,_ Dlws) 1o

() 33300+ 3 ) (33032

()l 20390+ 5 ) (27

(tos) (5) + 3 (1 54)) o) (1)

by Lemma 7

_Jiet+ o), ifk=1
o(1), otherwise.

(
1
2
1
2
1
2
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(ii) We observe that t|( 10) € O(1). And for k > 1,
1

(19) (tlek)|(;,(1)) = ((tlu,,_ 1)|U2)|(:1)’(1))

(
1
5 (o) lagy(39y +
1
3

has a holomorphic Fourier expansion if ¥ = 1. Thus we suppose k > 2. We
then derive that

(tv,e) (21

)
(tlek 2) le) I( g% )

(o) I(38)(33)

(o) l(30)(31)

(
1
2
1
2
1
2

N = N = o=
~
=+
=
>
|
N
g

—~
-
=

1
——
o —
~~
o Yo
-0
~—
PamnN
o
(S
~—

(o) Iy 9)(31)
If we substitute the above into (19), for k > 2,

00) (o)l

0
?)
@) =5 )l gey33) * 1 G 0 44)(30)
1
3o G 9)(31(39)
@) =5 (o) g )3g)+ 3 )23

ﬁ(t'%k—z’)'(é?)(s% )

When & = 2,

(o)l 39y = <tlv2>l( 0 (3)+ 30 >(z+%)

+ t|(10)(4z+1)

1

= Z(M_ +0O(1) by (i).
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It k = 3,

ol 39) =3 W0l 39y (3) + 3 )l ) (++ 5)

300|102+ 1)

{

—=oO

_ %e—ri(z+§) + O(l) - __;_q2~1 + 0(1)

by (i) and the case k =1 in (ii).
For k > 4, we will show by induction on & that

(23) (tloe) l(10y = (—1)* . gg g o).
First we note that by (i) and (20)
(tlo) [(30) = 3 (loas) | 30 )42+ 1)+ O,

If k = 4,

(tlryes) (19 )4z +1)+0(1)

]

(o) I3 9) =

= 11—66_%(42“) +O(1) by the case k =2
_ D -4
= (ot o)

Thus when k = 4, (23) holds. Meanwhile, if k = 5 then we get that

(ﬂ%dkég)=E(WAthgg)@Z+1%+Oﬂ>

= - ;—28””(42“) +0O(1) bythecase k=3
1 b _o5-a
= (-1 O,
Therefore in this case (23) is also valid. Now for k > 6,
1
= — 1
(Hlos ) I 10y =7 (tloye-2) I 1042+ 1) +0(1)
1 i ) o
- L_l . (_1)k—2—1 . 2;_2 _6—27rz(4z+1)~2k 2-4 +0(1)
by induction hypothesis for k — 2
1 b _ok—a
= (-1)* 1-2—k-q T+ 0().
This proves the lemma. g

Theorem 18. For k > 1,

@) (i), @ = 0 (X0 - Xnl (24 5))-
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This identity twisted by a character x is analogous to the “2*-plication formula”
([7], [22]) satisfied by the Hauptmodul of To(N).

Proof. Put g(z) = (—1)*71- 1. (Xyu (t)(2) — Xax(t) (2 + 1)) as before. We see
by Lemma 16 that both (t|U2’°)x and g sit in K (X;(24)). For (t|U2k)X =g, we
will show that (t|U2k) — ¢ has no poles in $*. Recall that

(tIU2k)X \/—— Z t|U k)|(‘éi)

1€(Z/4L)*
2k_1
i)t .
aiv= P MDY iy

ie(Z/4Z)x =0

Since ¢ has poles only at I';(12)oo, (t|u,, )x can also have poles only at

. N | '
(407 (54) T(2eo=167 2% (§5) (% 7 ) Ta(12)o0
= ( 2442 4y ) I'1(12)00
Let (2%) € I'1(12). Then

K42, pin
2542 454 ( ab ) 00 = 2%+24_4jc—ic * 00 = M
0 4 cd 4c * 4c '

Observe that (2**2a—4jc—ic, 4c) | 25-16 = 25+4. Write (2¥+2a—4jc—ic,4c) =
2! for some integer ! > 0. Then

(2k*+2a — 4jc —ic) /2!
4c/2

S =

is in lowest terms. Since 12 | ¢, s is of the form s = 3 for some integers m

and n. We assume (3m,n) = 1. Here we consider two cases.
(i) 22 tm:
Choose integers  and y such that ( sm 3 ) € SL2(Z) and consider

1
(o) I )= 77 (o (4332 ~ o (830 3))
1
- 75 (e ongrs) Mo gz

Since (3m,n) = 1 and 22 { m, we can write ( #333™ * ) = yU; and ( *332™ *)

= 7o'Us, where both vy and o’ are in T'g(12) and U, Uz are upper triangular
matrices. Then by (18), (t|U2’°)x|( 2.2y € O(1). Hence, if 22 { m then
m y

(tlek)x is holomorphic at the cusp s = 5.
(ii) 22 | m:
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If 23 | m, then s is of the form s = ( a5, § ) 0o with ( gm 5 ) € T'o(24). Thus
by Lemma 16,

(o) N2y = (-1)% - (ng—/‘J (tly, ), € OQ).

As for the other cases, if we use Lemma 1, it is easy to see that s is equivalent
to {5 or & under I';(24).

Thus we conclude that (t|U2k )x can have poles only at %, % under Ty (24)-
equivalence. Next, let us investigate the poles of g. Recall that Xy (¢) has

poles only at I'1 (12)co. Therefore g can have poles only at ( 2} )_1 Iy (12)c0
for i =0,1. And, for ( ¢Y4) e I'1(12),

(33)7(28)oo=(35) (2h)o0= 22

2¢
—ic/2
= ¢ ic/ in lowest terms.
C

Hence by Lemma 1, g can have pollfs only at 2—14, 551, %, %, 1—12, % under I'; (24)-

equivalence. At 512, %, % and 537, it is easy to check that g is holomorphic.
For example, at 2

51y = 05 (X0l g1~ X2 Ol 31)(51)
= (5 (K@l ) - X Ol 7,)
=g (el ) - Ol (2 7)
€0(1) since 2, g ¢ T1(12)cc.

Now it remains to show that (tlek)X ~ g has no poles at the cusps equivalent

to 5, 5 under I'1(24). At L,
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By (25) and Lemma 17, we have the following:

1 1 —mi(4dz+5
k=1, (tva) I( 9) " V=i (_56 (et +O(1))
= -¢ 2+ 0(1)
1 L _z6241)
k=2, (o) 30y = 77 \2 +0(1)
1 _
= — 3¢ ‘+0()
1 i —mi(16z
Hh=5 (o)l 0y = o (—ge 0 +0)
1 s
= 1—6(1 +0(1)
k=4, (t|U2k)x|( 1)
1 k=1, b _omi2k—t.(16241)
= . {(= C— 1
e (( 1) 5% € +0(1)

= (~1)F 1 =g + O(1).

ok+1
Observe that the identities for k = 1,2 and 3 are the same as the last one when
k > 4. Hence we conclude that for all k£ > 1,

_ 1 ok
(t|U2’°)X I( 1 (1)) = (_1)k 1, SR q 2 +O(1).
On the other hand,

ol 19y =D g (Xl o)~ Xer 0l 33 )(39)
L1
= (D5 (sz(t) — Xax ()] 7 4 )22 )>
= (D g 0
Thus
((t|U2k)X — 9) |( L0 € 0(1).
At 5, weseethat ( 32)=(2132)(%Y) sends co to 5. Then

)
)
- (0 (Sgimm) (), () b Lemma 1
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=(-1)- (tlek)x !( 51)

= (1 g0 4O,
And
ol g2y =05 (Xl g2y~ X O3y 2))

N = N

: <X2k<t>;( 52) " Xrlin-1y(3; >>
=(=1)*. % ~X2k(t)|( 21) +0(1)

This implies that

((t(vzk)x —g) I( 52)€0),

12
from which the theorem follows. .

Now, we are ready to show periodically vanishing property of A (j1,12).

Corollary 19. As before we let t be the Hauptmodul of T1(12) and write
Xa(t) = %q_" + 2 st Hmng™. Then we have

(1) Hm,Zk = (—l)k_l (_Wl) Hka,l fOT Odd m.

(ii) Hy, = 0 whenever m =4 mod 6, and m = 5.

Proof. First if we compare the coefficients of ¢™-terms on both sides of the
identity in Theorem 18, we get (i). We see from the Appendix, Table 4 that
Hs = 0. On the other hand, by the super-replication formula (Corollary 11) it
follows that for m relatively prime to 12,

Hokrm 1, fm=41 mod 12

H,, o0 = Hye,, =
.2 2m {—Hka,l, ifm=+5 mod 12

because hgx,, 1 = 0 in this case ([22], Corollary 3.1). Then Hox,, ; = 0 when k
is odd and m =5 mod 6, or k is even and m =1 mod 6. It is easy to see
that

{2*m | k,m>1, kodd, m=5 mod 6}U{2%m | k,m > 1, k even,
m=1 mod 6}={{€Z]|l=4 mod 6}.
This proves (ii). O

Appendix. Fourier coefficients of the Hauptmodul N (j; n)
We shall make use of the following modular forms to construct ji . For
zZE€H,
e (z) the Dedekind eta function
e (G2(z) Eisenstein series of weight 2
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. Gép)(z) = Ga(2) — pGa(pz) for each prime p

e Ey(2) = G2(2)/(2{(2)) normalized Eisenstein series of weight 2

o Eép) (2) = Ex(z) — pEy(pz) for each prime p

e Pya(z) = Pr, (#55%2)  N-th division value of P, where a = (a1,a2),

L, =Zz +Z and Pr(7) is the Weierstrass P-function (relative to a lattice L)
Now we get the following tables due to [16]-[18]:

Table 3. Hauptmoduln NV (j1,n)

(V] JiN [ NGy ]
1 j(z) j(z) — 744
2 02(2)8/94(2z)8 256/41,2 +24
3 E4(z)/Eq(32) 240/(j13—1)+9
4 02(22)4/93(22)4 16/.7.1,4 -8
4n(2)® /n(52)+ B (2) /(i _
5 (2,7)(51)5/7(15)2)2 8/(.71,5 + 44) 5
Gy (2)=G5 " (32) 1) —
6 T e . 2/re 11
7,10 2)— 72,0012 _ e —
7 P7,(1,0)(7Z)_P7,(4,2)(7Z) 1/(‘71’7 1) 3
8 63(22)/6s(42) 2/(jis—1) -1
’ng(lyo)(Qz)—’P (2, )(92) _ . _ _
9 7)1)9’(1]021(32;_17;:(:2) (E()f()) ) 1/(]1,9 1) 2
10,(1,00\1Y2)— "10,(2,00 12 : — _
10 Pio (1,0)(102)—7’12,(2,2)(102) —1/(‘71’10 1) 2
12 03(22)/05(62) 2/(j12 — 1)

When N = 1,2,3,4,6, N(j1,n) becomes a Thompson series T, with I’y =
To(N). Hence, if N = 4, N(j1,4) has periodically vanishing property by The-
orem 13-(i). Otherwise, the Fourier coefficients of A'(j1,~) do not vanish (see
[24], Table 1). Therefore, we consider only the following cases N for which
I'1(N) # Lo(N).

Table 4. Fourier coefficients H,, of N (j1,n) for 1 <m <60

>

| [N Gs) [ NGy [NGs) [NGre) [NU110) [ NUiz) |

H, 10 4 3 2 2 1
H, 5 3 2 2 1 1
H; -15 0 1 1 1 1
Hy -24 -5 -2 -1 0 0
Hy 15 -7 -4 -2 -1 0
Hg 70 -2 -4 -3 -2 -1
H, 30 8 0 -2 -2 -1
Hyg -125 16 6 1 -1 -1
Hy -175 12 9 4 1 -1
Hyp 95 -7 8 6 3 0




SUPER-REPLICABLE FUNCTIONS

L [ NGwLs) [NGL) [NGLs) [ NGe) [NGo) [ NGiie) |
Hi 420 -29 -1 5 4 1
Hys 180 -35 -12 1 4 2
His -615 -10 -20 -5 1 2
Hyg -826 37 -16 -11 -2 2
Hqs 410 70 1 -12 -6 1
Hig 1760 53 22 -7 -8 0
Hir 705 -21 38 3 -7 -2
Hyg -2415 -106 30 15 -3 -3
Hiyg -3100 -126 1 22 4 -4
Hoyg 1530 -38 -40 19 10 -4
Hoq 6270 119 -64 5 14 -2
Hsys 2460 226 -52 -15 12 0
Hys -8090 164 -2 -32 6 3
Hoy -10174 -70 68 -36 -6 5
Hos 4840 -326 107 -22 -16 7
Hyg 19570 -378 88 8 -22 6
Hy; 7500 -106 -2 40 -20 4
Hog -24360 353 -112 58 -8 0
Hog -30024 652 -180 50 8 -4
Hjg 14130 469 -144 12 26 -8
Hjz; 55970 -189 3 -41 34 -10
Hjso 21155 -885 182 -84 31 -9
Hag -67380 -1015 292 -93 12 -6
Hsy -81926 -290 228 -54 -14 0
Hg; 37895 910 4 22 -41 6
Hsg 148410 1664 -286 103 -54 12
Hsy 55305 1179 -452 148 -47 14
Hsg || -174500 -483 -356 124 -20 14
Hsg || -209577 -2205 -4 32 23 8
Hyg 96025 -2492 440 -96 61 0
Hy 371620 -692 686 -200 84 -10
Hyo 137160 2212 544 -219 72 -18
Hys || -427665 3998 -5 -128 31 -22
Hyy || -508800 2809 -668 46 -32 -20
Hys 230670 -1120 -1044 231 -90 -12
Hye 885070 -5119 -816 330 -122 0
Hyy 323605 -5754 5 275 -107 15
Hg || -1001340 | -1598 996 67 -44 26
Hyg || -1181123 4992 1563 -216 45 33

| Hyg 531545 8968 1210 -439 133 29

369
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l [ NGis) [N [NGrg) [NGe) [NGi0) [NGiie) |

Hsq || 2022670 | 6251 6 -477 174 19
Hy, || 734130 -2506 -1464 -275 154 0

Hss || -2253515 | -11285 | -2276 107 61 -20
Hy, || -2639348 | -12579 | -1768 501 -68 -37
Hss || 1178880 | -3455 -8 708 -192 -45
Hyg || 4456650 | 10812 2128 590 -254 -42
Hs7 || 1606500 | 19278 3284 146 -220 -26
Hsg || -4901250 | 13362 2552 -447 -90 0

Hsg || -5703676 | -5278 -9 911 100 27
Hgp || 2532720 | -23765 | -3056 -987 272 52
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