DOI QR코드

DOI QR Code

Electrocatalytic Oxidation of NADH at the Modified Graphite Electrode Incorporating Gold Nano Particles

금 나노입자를 회합시킨 수식된 흑연전극으로 NADH의 전기촉매 산화반응

  • Published : 2007.02.28

Abstract

Mercaptopropionic acid(mpa) has been used to make self-assembled monolayer(SAMs) on the surface of graphite electrode incorporating gold nano particles, which are subsequently modified with dopamine(dopa). Such modified electrodes haying types of Gr(Au)/mpa-dopa were employed in the electrocatalytic oxidation of NADH. The responses of such modified electrodes were studied in terms of electron transfer kinetics and reaction procedure in the reaction. The reaction of the surface immobilized dopa with NADH was studied using the rotating disk electrode technique and a value of $5.06{\times}10^5M^{-1}s^{-1}$ was obtained for the second-order rate constant in 0.1 M phosphate buffer(pH=7.0), which was a $EC_{cat}$ and kinetic controlled procedure. But, the modified electrodes were diffusion controlled reaction having $4.64{\times}10^{-4}cm^2s^{-1}$ of the coefficient within $10^{-3}s$ after starting the reaction.

금 나노 입자를 회합시킨 흑연전극 표면에 mercaptopropionic acid(mpa)를 사용하여 자기조립 단층막(self-assembled monolayer: SAMs)을 생성시키고 이어서 도파민(dopa)과의 짝지움 반응을 통하여 Gr(Au)/mpa-dopa형의 수식된 전극을 제작하여 NADH의 전기촉매 산화반응에 적용하였다. 이 수식 전극이 전자전달반응속도와 반응과정에 대하여 연구하였다. 전극 표면에 고정된 도파민이 NADH와 이차반응 속도상수는 회전 전극법으로 0.1 M 인산염 완충용액(pH=7.0)에서 결정하였으며 그 값이 $5.06{\times}10^5M^{-1}s^{-1}$였고, $EC_{cat}$ 및 전자전달이 지배적인 과정이었다. 그러나 반응초기 즉, $10^{-3}s$ 이내에서는 이 전극에서 확산에 영향을 받으며 그 때 확산계수는 $4.64{\times}10^{-4}cm^2s^{-1}$이다.

Keywords

References

  1. W. J. Blaedel and R. A. Jenkins, Anal Chem., 48, 1240 (1976) https://doi.org/10.1021/ac50002a045
  2. B. E. Poirer and E. D. Pylant, Science, 272, 1145 (1996) https://doi.org/10.1126/science.272.5265.1145
  3. G.-J. Lee and S.-I. Pyun, J. Kor. Electrochem. Soc., 9-1, 10 (2006) https://doi.org/10.5229/JKES.2006.9.1.010
  4. M. Shi and F. C. Anson. Anal. Chem., 70, 1489 (1998) https://doi.org/10.1021/ac971234c
  5. F. Pariente, F. Tobalina, E Lorenzo, and H. D. Abruna, Anal. Chem., 67, 3936 (1995) https://doi.org/10.1021/ac00117a019
  6. A. Ulman, Chem. Rev., 96, 1533 (1996) https://doi.org/10.1021/cr9502357
  7. H. L. Dubois and R. G Nuzzo, Annu. Rev. Phys. Chem., 24, 112 (1992)
  8. Y. Xia and G. M. Whitesides, Angew, Chem., Int. Ed. Engl., 37, 550 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  9. R. S. Clegg and J. E. Hutchen, J. Am. Chem. Soc., 121, 5319 (1999) https://doi.org/10.1021/ja9901011
  10. S. K. Cha, J. polymer Sci., part B, 35, 165 (1997) https://doi.org/10.1002/(SICI)1099-0488(19970115)35:1<165::AID-POLB14>3.0.CO;2-B
  11. S. K. Cha, Bull. Korean Chem. Soc., 25(6), 786 (2004) https://doi.org/10.5012/bkcs.2004.25.6.786
  12. H. Huck and H. L. Schmit, Angew, Chem., 93, 421 (1981) https://doi.org/10.1002/ange.19810930432
  13. D. T. Sawyer and J. L. Robert, Jr. Experimental Electrochemistry for Chemists; John Wiley & Sons; 1974, chp.4
  14. I.-C. Lee, S.-E. Bae, M.-B. Song, J.-S. Lee, S. H. Paek, and C.-W. Lee, J. Bull. Korean Chem. Soc., 25(2), 167 (2004) https://doi.org/10.5012/bkcs.2004.25.2.167
  15. J. F. Rodriguez,. T. Mebrahtu, and M. P. Soriaga, J. Electroanal. Chem., 233, 283 (1987) https://doi.org/10.1016/0022-0728(87)85023-4
  16. J. H. Kang, Bull. Korean Chem. Soc., 25(5), 625 (2004) https://doi.org/10.5012/bkcs.2004.25.5.625
  17. J. A. Lee, W.-H. Seol, Y. M. Lee, and J.-K. Park, J. Kor. Electrochem. Soc., 9-1, 29 (2006) https://doi.org/10.5229/JKES.2006.9.1.029
  18. G. K. Rowe and S. E. Creaker, J. Phys. Chem., 98(21) 5500 (1994) https://doi.org/10.1021/j100072a017