Abstract
In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.
본 논문에서는 AAM(Active Appearance Model)과 가버 특징 벡터를 이용한 얼굴 인식 시스템을 제안한다. 가버 특징 벡터를 사용하는 대표적인 얼굴 인식 알고리즘인 EBGM(Elastic Bunch Graph Matching)은 가버 특징 벡터를 추출하기 위해 얼굴 특징점들의 검출을 필요로 한다. 그런데, EBGM에서 사용되는 얼굴 특징점 검출 방법은 가버젯 유사도에 기반하는데 이는 초기점에 민감하다. 잘못된 특징점 검출은 얼굴 인식에 영향을 미친다. AAM은 얼굴 특징점 검출에 효과적인 것으로 알려져 있다. 본 논문에서는 AAM으로 얼굴 특징점들을 대략적으로 추정하고 추정된 특징점들을 초기점으로 하여 가버젯 유사도 기반 특징점 검출방법으로 특징점 검출을 정교화하는 얼굴 특징점 검출 방법과 이에 기반한 얼굴 인식 시스템을 제안한다. 실험을 통해 제안된 특징점 검출 방법을 사용한 얼굴 인식 시스템이 EBGM과 같이 기존 가버젯 유사도만의 얼굴 특징점 검출을 이용한 얼굴 인식 시스템보다 더 나은 성능 개선을 보임을 실험을 통해 확인하였다.