DOI QR코드

DOI QR Code

Robust Face Recognition System using AAM and Gabor Feature Vectors

AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템

  • 김상훈 (숭실대학교 정보통신전자공학부) ;
  • 정수환 (숭실대학교 정보통신전자공학부) ;
  • 전승선 (홍익대학교 지능정보처리 연구실) ;
  • 김재민 (홍익대학교 지능정보처리 연구실) ;
  • 조성원 (홍익대학교 지능정보처리 연구실) ;
  • 정선태 (숭실대학교 정보통신전자공학부)
  • Published : 2007.02.28

Abstract

In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

본 논문에서는 AAM(Active Appearance Model)과 가버 특징 벡터를 이용한 얼굴 인식 시스템을 제안한다. 가버 특징 벡터를 사용하는 대표적인 얼굴 인식 알고리즘인 EBGM(Elastic Bunch Graph Matching)은 가버 특징 벡터를 추출하기 위해 얼굴 특징점들의 검출을 필요로 한다. 그런데, EBGM에서 사용되는 얼굴 특징점 검출 방법은 가버젯 유사도에 기반하는데 이는 초기점에 민감하다. 잘못된 특징점 검출은 얼굴 인식에 영향을 미친다. AAM은 얼굴 특징점 검출에 효과적인 것으로 알려져 있다. 본 논문에서는 AAM으로 얼굴 특징점들을 대략적으로 추정하고 추정된 특징점들을 초기점으로 하여 가버젯 유사도 기반 특징점 검출방법으로 특징점 검출을 정교화하는 얼굴 특징점 검출 방법과 이에 기반한 얼굴 인식 시스템을 제안한다. 실험을 통해 제안된 특징점 검출 방법을 사용한 얼굴 인식 시스템이 EBGM과 같이 기존 가버젯 유사도만의 얼굴 특징점 검출을 이용한 얼굴 인식 시스템보다 더 나은 성능 개선을 보임을 실험을 통해 확인하였다.

Keywords

References

  1. L. O. Gorrnan, "Comparing passwords, tokens, and biometrics for user authentication," Proceedings of the IEEE, Vol.91, Issue 12, pp. 2021-2040, Dec. 2003.
  2. W. Zhao, R Chellappa, J. Phillips, and A. Rosenfeld, "Face Recognition: A Literature Survey," ACM Computing Surveys, pp.399-458, 2003
  3. S. Z. Li and A K Jain, Handbook of Face Recognition, Springer, 2004.
  4. Y. Aclini, Y. Moses, and S. llliman, "Face Recognition: The problem of compensating for changes inillumination direction," IEEE Trans. on Pattem Analysis and Machine Intelligence, Vol.19, No.7, pp.721-732, July 1997 https://doi.org/10.1109/34.598229
  5. M. Turk and A Pentland, "Face Recognitionusing EigenIfaces," Proceeclings of IEEE Computer Vision and Pattem Recognition,Maui, Hawaii, pp.586-590, Dec. 1991.
  6. V. Belhumeur, J. Hespanha, and D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition using class specic linear projection," IEEE Transactions on Pattem Analysis and Macchine Intelligence, Vol.19, No.7, pp.711-720, July 1997. https://doi.org/10.1109/34.598228
  7. M S. Bartlett, J. R Movellan, and T. J. Sejnowski,Face Recognition by Independent Component Analysis, IEEE Trans. on Neural Networks, Vol.13, No.6, pp.1450-1464, Nov. 2002. https://doi.org/10.1109/TNN.2002.804287
  8. P. S. Penev, Local feature analysis: A Statistical Theory for Information Representation and Transmission, ph. D. Thesis, The Rockefeller University, 1998.
  9. A L. Yuille, "Deformaable Templates for Face Recognition," J. Congnitive Neurosci., Vol.3, No.1, pp.59-70, 1991. https://doi.org/10.1162/jocn.1991.3.1.59
  10. L. Wìskott, J. M Fellous, N. Kuiger, and C. von der Ma1sburg, "Face Recognition by Elastic Bunch Graph Matching," Pattern Analysis and Machine Intelligence, IEEE Transactions, Vol.19, pp.775-779, July 1997.
  11. D. Bolme, Elastic Bunch Graph Matching, Masters Thesis, CSU Computer Science Department, June 2003.
  12. T. F. Cootes, D. J. Edwards, and S. J. Taylor, "Active Appearance Models," IEE Trans. Pattern Anal. Mach Intell., Vol.23, No.6, pp.681-685, Jun. 2001. https://doi.org/10.1109/34.927467
  13. V. Blanz and T. Vetter, "Face Recongnition based on Fitting a 3D Morphable Model" IEEE Trans on Pattem Analysis and Machine Intelligence, Vol25, No.9, pp.1063-1074, 2003. https://doi.org/10.1109/TPAMI.2003.1227983
  14. J.K Kamarainen, V. Kyrki, and H. Kalviainen, "Invariance Properties of Gabor filter-based features-overview and applications," Image Processing, IEEE Transactions on image processing, Vol.l5, Issue 5, pp.1088-1099, May 2006. https://doi.org/10.1109/TIP.2005.864174
  15. P. Wang, M B Green, J. Qiang, and J. Wayrnan, "Automatic Eye Detection and Its Validation," Computer Vision and Pattern Recongntion, 2005 IEEE computer Society Conference, Vol.3, pp.164-172, June 2005.
  16. J. C. Gower, "Generalized Procrustes Analysis," Psychometrika, Vol.40, pp33-51, 1975 https://doi.org/10.1007/BF02291478
  17. D. T. Lee and B. J. Schachter, "Two Algorithrns for Constructing a Delaunay Triarngation," Int. J. Computer Infonnation Sci.9, pp.219-242, 1980. https://doi.org/10.1007/BF00977785
  18. R. lienhart and. :Maydt,"An Extended Set of Harr-like Features for Rapid object Detection" IEEE ICIP 2002, Vol.1, pp.900-903, Sep.2002.
  19. T. Kawaguchi, D. Hidaka, and M Rizon, "Robust Extraction of Eyes from Face," 15th Int'1 Conf. on Pattern Recongtion, Vol.1, pp. 1100-1114, Sept. 2000.
  20. htp:// www2.imm.dtu.dk/-aam