Interaction Proteome Analysis of Xanthomonas Hrp Proteins

  • Published : 2007.02.28

Abstract

Because of the importance of the type III protein-secretion system in bacteria-plant interaction, its function in bacterial pathogenesis of plants has been intensively studied. To identity bacterial proteins interacting with Xanthomonas hrp gene products that are involved in pathogenicity, we performed the glutathione-bead binding analysis of Xanthomonas lysates containing GST-tagged Hrp proteins. Analysis of glutathione-bead bound proteins by 1-DE and MALDI-TOF has demonstrated that Avr proteins, RecA, and several components of the type III secretion system interact with HrpB protein. This proteomic approach could provide a powerful tool in finding interaction partners of Hrp proteins whose roles in host-pathogen interaction need further studies.

Keywords

References

  1. Alfano, J. R. and A. Collmer. 1996. Bacterial pathogens in plants: Life up against wall. Plant Cell 8: 1683-1698 https://doi.org/10.1105/tpc.8.10.1683
  2. Alfano, J. R., A. O. Charkowski, W. L. Deng, J. L. Badel, T. Petnicki-Ocwieja, K. van Dijk, and A. Collmer. 2000. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97: 4856-4861
  3. Anderson, N. L. and N. G. Anderson. 1998. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 19: 1853-1861 https://doi.org/10.1002/elps.1150191103
  4. Bonas, U. 1994. hrp Genes of phytopathogenic bacteria. Curr. Top. Microbiol. Immunol. 192: 79-98
  5. Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity produced by Bacillus sp. DJ-2 from Doen-jang. J. Microbiol. Biotechnol. 15: 72-79
  6. Choi, N. S., S. K. Ju, T. Y. Lee, K. S. Yoon, K. T. Chang, P. J. Maeng, and S. H. Kim. 2005. Miniscale identification and characterization of subtilisins from Bacillus sp. strains. J. Microbiol. Biotechnol. 15: 537-543
  7. Dow, J. M., L. Crossman, K. Findlay, Y. Q. He, J. X. Feng, and J. L. Tang. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100: 10995-11000
  8. Fenselan, S., I. Balbo, and U. Bonas. 1992. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals. Mol. Plant Microbe Interact. 5: 390-396 https://doi.org/10.1094/MPMI-5-390
  9. Karlin, S., G. M. Weinstock, and V. Brendel. 1995. Bacterial classifications derived from recA protein sequence comparisons. J. Bacteriol. 177: 6881-6893 https://doi.org/10.1128/jb.177.23.6881-6893.1995
  10. Kearney, B. and B. J. Staskawicz. 1990. Characterization of IS476 and its role in bacterial spot disease of tomato and pepper. J. Bacteriol. 172: 143-148 https://doi.org/10.1128/jb.172.1.143-148.1990
  11. Kim, J. F. and J. R. Alfano. 2002. Pathogenicity islands and virulence plasmids of bacterial plant pathogens. Curr. Top. Microbiol. Immunol. 264: 127-147
  12. Kim, M. J., H. J. Chung, S. M. Park, S. G. Park, D. K. Chung, M. S. Yang, and D. H. Kim. 2004. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)-based cloning of enolase, ENO1, from Cryphonectria parasitica. J. Microbiol. Biotechnol. 14: 620-627
  13. Leach, J. E., M. L. Rhoads, C. M. Vera Cruz, F. F. White, T. W. Mew, and H. Leung. 1992. Assessment of genetic diversity and population structure of Xanthomonas oryzae pv. oryzae with a repetitive DNA element. Appl. Environ. Microbiol. 58: 2188-2195
  14. Liu, Y., A. Chatterjee, and A. K. Chatterjee. 1994. Nucleotide sequence, organization and expression of rdgA and rdgB genes that regulate pectin lyase production in the plant pathogenic bacterium Erwinia carotovora subsp. carotovora in response to DNA-damaging agents. Mol. Microbiol. 14: 999-1010 https://doi.org/10.1111/j.1365-2958.1994.tb01334.x
  15. Newman, M. A., J. Conrads-Strauch, G. Scofield, M. J. Daniels, and J. M. Dow. 1994. Defense-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity. Mol. Plant Microbe Interact. 7: 553-563 https://doi.org/10.1094/MPMI-7-0553
  16. Rossier. O., K. Wengelnik, K. Hahn, and U. Bonas. 1999. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373
  17. Rossier, O., G. Van den Ackerveken, and U. Bonas. 2000. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 38: 828-838 https://doi.org/10.1046/j.1365-2958.2000.02173.x
  18. Wengelnik, K., C. Marie, M. Russel, and U. Bonas. 1996. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. J. Bacteriol. 178: 1061-1069 https://doi.org/10.1128/jb.178.4.1061-1069.1996
  19. Zhu, W., M. M. MaGbanua, and F. F. White. 2000. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol. 182: 1844-1853 https://doi.org/10.1128/JB.182.7.1844-1853.2000