Study on Preparation of Environmental-Friendly Specialty Paper Using Functional Antibiotic Nano-Particle (II)

기능성 항균 나노입자를 이용한 친환경성 특수지 제조에 관한 연구(II)

  • Cho, Jun-Hyung (Department of Paper Science & Engineering, Kangwon National University) ;
  • Lee, Yong-Won (Department of Paper Science & Engineering, Kangwon National University) ;
  • Kim, Hyoung-Jin (Department of Forest Products, Kookmin University)
  • Received : 2006.06.30
  • Accepted : 2007.01.19
  • Published : 2007.02.10

Abstract

For the purpose of antibacterial and photocatalystic deodorization functions, the papermaking inorganic fillers and pigments were surface-modified with Ag nano-colloidal solution and $TiO_2$ by using the hybridization technique. The functional specialty sheets and coating papers were produced with the surface-modified fillers and pigments, and evaluated by halo test and inhibition growth test in their antibacterial and photocatalystic characteristics. For the application of specially produced antibacterial handsheet to the wallpaper usages, the photocatalyst efficiency test of benzene in volatile organic compound dissolution experiment of antibacterial and deodorization function wallpaper showed that the efficiency was 45~50% for 80 min of reaction time and 90% of attained resolution was reached at approximately 30 min of response time.

제지용 무기안료에 항균기능과 광촉매 탈취기능을 부여하기 위해 hybridization system을 이용하여 Ag 용액과 $TiO_2$로 표면 개질 처리하여 기능성 무기안료를 제조하고, 이를 이용하여 항균 및 탈취 기능을 갖는 특수지를 제조한 후 내항균 특성을 평가하였다. 내항균 평가로는 균의 생성여부를 눈으로 직접 확인 할 수 있는 halo test법, 균들의 생육 저하효과를 확인하는 방법인 inhibition growth test와 정균감소법을 사용하였다. 또한 제조된 항균기능성 특수지를 벽지용도로 적용하고자 하였으며, 내항균 평가 시 항균벽지 주위로 선명한 클리어 존이 형성되어 균의 성장 억제를 육안으로 확인할 수 있었다. 항균 및 탈취기능을 지니는 특수지의 휘발성 유기화합물 분해능 평가를 위한 benzene의 광촉매 분해 효율실험에서 반응시간 80min 동안 45~50%의 제거효율을 보였으며, 반응시간 30 min 정도에서 분해효율이 90% 이상 도달함을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. A. Fujishima and T. N. Rao, Pure Appl. Chem., 70, 2177 (1998)
  2. J. H. Cho and Y. W. Lee, Theories and Applications of Chem. Eng., 10, 1502 (2004)
  3. Powder surface modification. NARA MACHINERY CO., LTD
  4. J. H. Cho, Y. W. Lee, H. J. Kim, and J. M. Lee, J of the Korean Institute of Chem. Eng., 16, 385 (2005)
  5. J. H. Cho and Y. W. Lee, Proc. 43rd Intern. Symp. Powder Science Tech., 71 (2005)
  6. K. S. Kim, K. U. Bae, and C. Y. Park, Theories and Applications of Chem. Eng., 7, 107 (1996)
  7. J. H. Cho and D. J. Min, Theories and Applications of Chem. Eng., 6, 3569 (2000)
  8. H. J. Kim, J. U. Un, J. H. Kim, and T. S. Sae, Theories and Applications of Chem. Eng., 18, 28 (2000)
  9. R. M. Alberici and W. F. Jardin, Appl. Catalysis B., 14, 55 (1997)
  10. J. H. Cho, D. J. Min, Y. Ushijima, and T. I. Yoo, Workshop Series of Chem. Eng., 2, 86 (2001)
  11. J. H. Cho, D. J. Min, J. M. Lee, and K. Hamada, Theories and Applications of Chem. Eng., 19, 13 (2001)
  12. J. H. Cho and D. J. Min, J of the Korean Institute of Chem. Eng., 39, 745 (2001)
  13. J. Zhao and X. Yang, Building and Environment, 38, 645 (2003) https://doi.org/10.1016/S0360-1323(02)00212-3
  14. C. A. Flemming, Appl. Environ. Microbial., 56, 3191 (1990)
  15. S. Y. Liau and L. Lett, Appl. Microbial., 25, 279 (1997)
  16. Q. L. Feng, J. Biomed. Mater. Res., 52, 662 (2000) https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  17. C. L. Fox, Antimicro. Agents Chem., 5, 528 (1974)
  18. S. M. Modak, Biochem. Pharmacol., 22, 2391 (1974)