Antioxidant Enzyme, Chlorophyll Contents and Stomatal Changes of Five Tree Species under Ozone Stress

저농도 오존처리에 따른 다섯 가지 유묘의 기공 변화, 엽록소 함량 및 항산화 효소 활성

  • Ryang, Soo Zin (Department of Environmental Horticulture, University of Seoul) ;
  • Woo, Su Young (Department of Environmental Horticulture, University of Seoul) ;
  • Je, Sun Mi (Department of Forest Environment, Korea Forest Research Institute)
  • 양수진 (서울시립대학교 환경원에학과) ;
  • 우수영 (서울시립대학교 환경원에학과) ;
  • 제선미 (국립산림과학원 산림환경부)
  • Received : 2007.08.03
  • Accepted : 2007.08.22
  • Published : 2007.09.30

Abstract

This study is conducted to identify responses of plants to low $O_3$ concentration, Five species, Liriodendron tulipifera, Cornus officinalis, Ginkgoba biloba, Zelkova serrata, and Acer palmatum, were exposed to low ozone concentration from June 9 to July 8 in the phytotron, We measured chlorophyll contents, leaf diffusion resistance, leaf transpiration, and antioxidant enzyme activities; ascorbate peroxidase(APX), Especially, Liriodendron tulipifera and Cornus officinalis showed sensitive responses to ozone treatment as visible injuries, while other four species relatively showed tolerant responses. However, we noticed that almost all species under ozone treatment were lower physiological activities such as chlorophyll contents, leaf diffusion resistance, leaf transpiration, and antioxidant enzyme activities with time even without any visible injury.

튜립나무, 산수유, 은행나무, 느티나무, 단풍나무 등, 총 다섯 수종을 대상으로 phytotron에서 저농도 오존을 처리한 후 이에 따른 식물의 반응을 고찰하였다. 엽록소함량, 잎 기공저항, 잎 증산량, 항산화효소인 APX(Ascorbate peroxidase)를 통해 분석하였고, 이에 따른 결과는 수종마다 각기 다르게 나타났다. 본 실험기간동안 가시피해현상이 나타난 수종은 튜립나무와 산수유 뿐이었지만 가시피해현상이 없는 수종도 포함, 전 수종이 저농도 오존에 의해 엽록소함량, 기공저항, 기공전도도, 항산화효소 활성에서 낮은 생리적 활성을 보임을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 서울시, 한국학술진흥재단

References

  1. 김영모, 한상섭, 이성재. 1990 잣나무 채종목의 클론별 침엽의 엽록소 함량의 연간변동. 임목육종연보 26: 97-103
  2. 박재주, 김재봉, 이우길, 배정오, 고경석, 이경재, 이용범,김정규, 최만식. 1987. 환경오염 식물지표법의 개발연구 (I). 국립환경연구원보고서. pp. 1-195
  3. 우수영, 이성한, 권기원, 이재천, 최정호. 2004 오존스트 레스에 대한 몇 수종의 생장, 광합성, Ascorbate oeroxidase 활성반응. 한국임학회지 93(5): 409-414
  4. 최정호, 정진철. 2002. 생육시기에 따른 무궁화 및 품종 의 엽록소 함량 변화. 생명자원과학연구 24: 28-34
  5. Amon, D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Betula vulgaris. Plant Physiology 24: 1-15 https://doi.org/10.1104/pp.24.1.1
  6. Asada K. 1999. The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annual review, Plant physiology, Plant molecular biology. 50: 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  7. Ashraf M. and P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant science 166: 3-16 https://doi.org/10.1016/j.plantsci.2003.10.024
  8. Baczek K.R. and J. Koscielniak. 2003. Antioxidative effect of elevated $CO_2 $concentration in the air on maize hybrids subjected to severe chill. Photosynthetica 41(2): 161-165 https://doi.org/10.1023/B:PHOT.0000011947.78548.e1
  9. Bernardi, R., C. Nali, P. Ginestri, C. Pugliesi, G. Lorenzini and M. Durante. 2004. Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone. Biologia plantarum 41 (2): 161-165 https://doi.org/10.1023/A:1001878901718
  10. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(2): 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  11. Davis D.D. and J.B. Coppolono. 1976. Ozone susceptibility of selected woody shrubs and vines. Plnsu dis. reptr 60: 876-878
  12. Heath R.L. 1980. Initial events in injury to plants by air pollutant. Plant physiology 31: 395-431 https://doi.org/10.1146/annurev.pp.31.060180.002143
  13. Kangasjarvi J., J. Talvinen, M. Utriainen and R. Karjalainen. 1994. Plant defence systems induced by ozone. Plant Cell and Environment 17: 783-794 https://doi.org/10.1111/j.1365-3040.1994.tb00173.x
  14. KronfuB G., A. Polle, M. Tausz, W.M. Havranek, and G. Wieser. 1998. Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needle of young Norway spruce [Picea abies (L.) Karst]. Trees 12: 482-489
  15. Lincoln T. and Z. Eduardo. 2005. Plant Physiology. Life science. pp. 54-59
  16. Paakkonen E., J. Vahala, M. Pohjolal, T. Holopainen, and L. Karenlampi. 1998. Physiological, stomatal, and ultrastructural ozone reponses in birch (Betula pendula Roth.) are modified by water stress. Plant, Cell and Environment 21 : 671-684 https://doi.org/10.1046/j.1365-3040.1998.00303.x
  17. Shannon J.G and, C.L. Mulchi. 1974. Ozone damage to wheat varieties at anthesis. Crop Science 14: 335-337 https://doi.org/10.2135/cropsci1974.0011183X001400020052x
  18. Thornber, J.P. 1975. Chlorophyll proteins: Light harvesting and reaction center components of plants, Annual. Review. Plant Physiology 26: 127-158 https://doi.org/10.1146/annurev.pp.26.060175.001015
  19. Winner W.E. 1994. Mechanistic analysis of plant reponses to air pollution. Ecological Applications 4(4): 651-661 https://doi.org/10.2307/1941998
  20. Woo, S.Y., K.W Kwon, J.C. Lee, J.H. Choi and B.S. Kang. 2003. Recovery of net photosynthetic rate after $SO_2$ Fumigation in Quercus accutissima, Pinus densiflora, Populus alba x P glandulosa, and Acanthopanax sessiliflorus. Photosynthetica 41 (2): 319-320 https://doi.org/10.1023/B:PHOT.0000011971.85208.8f
  21. Xingyuan H.E., Y. Ruan, W. Chen, and T. Lu. 2006. Responses of the anti-oxidative system in leaves of Ginkgo biloba to elevated ozone concentration in an urban area. Botanical Studies 47: 409-416
  22. Zhou, Y.H., J.Q. Yu, L.F. Huang and S. Nogus. 1994. The relationship between $CO_2$ assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant, Cell and Environment 27: 1503-1514 https://doi.org/10.1111/j.1365-3040.2004.01255.x