References
- 권수열, 최의소, 박후원, 전기로 슬래그를 도로용 골재로 사용하기 위한 연구, 대한토목학회 연구보고서 (1997)
- 손봉한, 영가 금속을 이용한 지하수내 고농도 염소계 지방족 화합물의 단일 또는 혼합 시 제거 특성, 석사학위논문, 고려대학교 (2007)
- 환경부, 2003년 지하수수질측정망 운영결과 보고 (2004)
- Agrawal, A., Ferguson, W. J., Gardner, B.O., Christ, J. A., Bandstra, J. Z. and Tratnyek, P. G., Effects of Carbonate Species on the Kinetics of Dechlorination of 1,1,1-Trichloroethane by Zero-Valent Iron, Environ. Sci. Technol., 36, pp. 4326-4333 (2002) https://doi.org/10.1021/es025562s
- Allen-King, R. M., Halket, R. M. and Burris, D. R., Reductive Transformation and Sorption of cis- And trans-1,2-Dichlo-roethene in a Metallic Iron-Water System, Environmental Toxicology and Chemistry, 16(3), pp. 424-429 (1997) https://doi.org/10.1897/1551-5028(1997)016<0424:RTASOC>2.3.CO;2
- Archer, W. L. and Simpson, E. L., Chemical Profile of Polychloroethanes and Polychloroalkenes, Ind. Eng. Chem., Prod. Res. Dev., 16(2) pp. 158-162 (1977) https://doi.org/10.1021/i360062a010
- Arnold, W. A. and Roberts, A. L., Pathways of Chlorinated Ethylene and Ahlorinated Acetylene Reaction with Zn(O), Environ. Sci. Technol., 32, pp. 3017-3025 (1998) https://doi.org/10.1021/es980252o
- Arnold, W. A. and Roberts, A. L., Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles, Environ. Sci. Technol., 34, pp. 1794-1805 (2000) https://doi.org/10.1021/es990884q
- Arnold, W. A., Ball, W. P. and Roberts, A. L., Polychlorinated Ethane Reaction with Zero-Valent Zinc: Pathways and Rate Control, Journal of Contaminant Hydrology, 40, pp. 183-200 (1999) https://doi.org/10.1016/S0169-7722(99)00045-5
- Boronina, T. and Klabunde, K. J., Destruction of Organohalides in Water Using Metal Particles: Carbon Tetrachloride/ Water Reactions with Magnesium, Tin and Zinc, Environ. Sci. Technol., 29, pp. 1511-1517 (1995)
- Burris, D. R., Campbell, T. J. and Manoranjan, V. S., Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System, Environ. Sci. Technol., 29, pp. 2850-2855 (1995) https://doi.org/10.1021/es00011a022
- Chen, J. L., Al-Abed, S. R., Ryan, J. A. and Li, Z., Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron, Journal of Hazardous Materials, B83, pp. 243-254 (2001)
- Farrell, J., Kason, M., Melitas, N. and Li, T., Electrochemical and Column Investigation of Iron-Mediated Reductive Dechlorination of Trichloroethylene and Perchloroethylene, Environ. sci. Technol., 34, pp. 2549-2556 (2000a) https://doi.org/10.1021/es991135b
- Farrell, J., Kason, M., Melitas, N. and Li, T., Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene, Environ. Sci. Technol., 34, pp. 514-521 (2000b) https://doi.org/10.1021/es990716y
- Gaspar, D. J., Lea, A. S., Engelhard, M. H. and Bae, D. R., Evidence for Localization of Reaction upon Reduction of CCI4 by Granular Iron, Langmuir, 18, pp. 7688-7693 (2002) https://doi.org/10.1021/la025798+
- Haggblom, M. M. and Bossert, I. D., DEHALOGENATlON, Microbial processes and environmental applications, Kluwer academic publication (2003)
- Janda, V., Vasek, P., Bizova, J. and Belohlav, Z., Kinetic models for Volatile chlorinated Hydrocarbons Removal by Zero-Valent Iron, Chemosphere, 54, pp. 917-925 (2004) https://doi.org/10.1016/j.chemosphere.2003.08.033
- Johnson, T, L., Fish, W., Gorby, Y. A. and Tratnyek, P. G., Degradation of Carbon Tetrachloride by Iron Metal: Complexation effects on the Oxide Surface, Journal of Contaminant Hydrology, 29, pp. 379-398 (1998) https://doi.org/10.1016/S0169-7722(97)00063-6
- Johnson, T. L., Scherer, M. M. and Tratnyek, P. G., Kinetics of Halogenated Organic Compound Degradation by Iron Metal, Environ. Sci. Technol., 30, pp. 2634-2640 (1996) https://doi.org/10.1021/es9600901
- Matheson, L. J. and Tratnyek, P. G., Reductive Dehalogenation of Chlorinated Methanes by Iron Metal, Environ. Sci. Technol., 28, pp. 2045-2053 (1994) https://doi.org/10.1021/es00061a012
- Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J. and Bylaska, E. J., Diversity of Contaminant Reduction Reaction by Zerovalent Iron: Role of the Reductate, Environ. Sci. Technol., 38, pp. 139-147 (2004) https://doi.org/10.1021/es034237h
-
Orth, W. S. and Gillham, R. W., Dechlorination of Trichloroethene in Aqueous Solution Using
$Fe^{\circ}$ , Environ. Sci. Technol., 30, pp. 66-71 (1996) https://doi.org/10.1021/es950053u - Scherer, M. M., Johnson, K. M., Westall, J. C. and Tratnyek, P. G., Mass Transport Effects on the Kinetics of Nitrobenzene Reduction by Iron Metal, Environ. Sci. Technol., 35, pp. 2804-2811 (2001) https://doi.org/10.1021/es0016856
- Scherer, M. M., Westall, .J. C, Ziomek-Moroz, M. and Tratnyek, P. G., Kinetics of Carbon Tetrachloride Reduction at Oxide-Free Iron Electrode, Environ. Sci. Technol., 31, pp. 2385-2391 (1997) https://doi.org/10.1021/es960999j
- Taylor, J. R., An Introduction to Error Analysis, The Study of Uncertainties if Physical Measurements University Science Books5 (1982)
- Tratnyek, P. G., Scherer M. M., Deng, B. and Hu, S., Effects of Natural Organic Matter, Anthropogenic Surfactants and Model Quinones on the Reduction of Contaminants by Zero- Valent Iron, Wat. Res., 35, pp. 4435-4443 (2001) https://doi.org/10.1016/S0043-1354(01)00165-8
- US EPA, National water Quality Inventory, Report to Congress (1998)
- WHO, Guidelines for Drinking Water Quality (1993)