Analysis of ITS DNA Sequences of Korean Oxalis Species (Oxalidaceae)

한국산 괭이밥속(Oxalis) 식물 ITS DNA 염기서열 분석

  • Koo, Jachoon (Division of Science Education, Chonbuk National University) ;
  • Chae, Mi Suk (Division of Science Education, Chonbuk National University) ;
  • Lee, Jeoung-Ki (Division of Science Education, Chonbuk National University) ;
  • Whang, Sung Soo (Division of Science Education, Chonbuk National University)
  • 구자춘 (전북대학교 과학교육학부) ;
  • 채미숙 (전북대학교 과학교육학부) ;
  • 이종기 (전북대학교 과학교육학부) ;
  • 황성수 (전북대학교 과학교육학부)
  • Received : 2007.10.04
  • Accepted : 2007.12.04
  • Published : 2007.12.31

Abstract

This study was conducted to know the taxonomic features of nuclear ribosomal ITS DNA sequences, ITS1, ITS3 and 5.8S regions, as to nine individuals belonging to four Oxalis species in Korea and an induced species. Sequences of the same regions of sixteen taxa deposited in GenBank were also aligned with those of Korean species as outgroups. The length of ITS sequences aligned in this study is 679 by in total. Evidences, from not only the sequence similarities and divergences but also the phylogenetic and statistical treatments with ITS sequences aligned, were useful for the taxonomy of the genus. The similarity of sequences, among both cauline and acauline taxa, is high as 89% and 95% respectively, but between cauline and acauline taxa, relatively low in the range of 64~69%. The sequence divergences, among both cauline and acauline taxa, is also high as much as 0.36~0.42, but between both cauline and both acauline taxa, low as 0.04~0.06. Two groups between cauline and acauline taxa are paraphyletic, and each group makes a single Glade with a high bootstrap value. The analysis of variance, using ITS sequence aligned, revealed that taxa are significantly different in the level of 0.5%, and O. corymbosa, an induced speices, is also separated from the Korean taxa in the Duncan analysis.

본 연구는 한국산 괭이밥 4분류군과 도입종 1분류군의 9개체를 대상으로 핵 리보솜 DNA인 5.8S, ITS1 그리고 ITS2 지역 염기서열의 분류학적 특정을 알아보기 위해 수행되었다. 군외군으로 GenBank에 축적되어 있는 16분류군의 동일지역 염기서열도 같이 정렬하여 사용하였다. 정렬 된 ITS 구간의 염기서열 길이는 679 bp 이었다. 분류군 별 유사도 및 염기서열 분기와 계통학적 및 통계학적인 분석 등의 결과는 염기서열 특징이 본 속의 분류에 유용한 것으로 나타났다. 유경종간 및 무경종간에 염기서열 유사도는 95%와 89%로 높게 나타나는 반면, 유경종과 무경종 사이는 64~69%로 비교적 낮게 나타난다. 염기서열 분기에서도 유경종과 무경종간에는 0.36~0.42로 높게 나타나며, 유경종과 유경종 또는 무경종과 무경종간에는 0.04~0.06으로 낮게 나타났다. 계통학적으로 유경종과 무경종 집단은 병계원으로 나타났으며, 두 집단은 각각 신빙성이 높은 단일 계통군을 형성한다. 정렬된 염기서열은 통계학적으로 유의성이 있으며, Duncan 사후검정에서 자주괭이밥은 한국산 분류군들에서 분리되었다.

Keywords

Acknowledgement

Supported by : 과학재단

References

  1. Appels, R. and R. L. Honeycutt. 1986. rDNA evolution over a billion years. In DNA Systematics. Dutta, S. K. (ed.), CRC Press, Boca Raton. pp. 81-135
  2. Baldwin, B. G. 1992. Phylogenetic utility of the transcribed spacers of nuclear ribosomal DNA in plants: two examples from the Madiinae (Asteraceae). Mol. Phylogenet. Evol. 1: 3-6 https://doi.org/10.1016/1055-7903(92)90030-K
  3. Berg, H. 2000. Differential seed dispersal in Oxalis acetosella, a cleistogamous perennial herb. Acta Oecologica 21: 109-18 https://doi.org/10.1016/S1146-609X(00)00118-1
  4. Berg, H. and P. Redbo-Torstensson. 1998. Cleistogamy as a bet-hedging strategy in Oxalis acetosella, a perennial herb. J. Ecol. 86: 491-500 https://doi.org/10.1046/j.1365-2745.1998.00272.x
  5. Brucher, H. 1969. Poliploidia en especies sudamericanas de Oxalis. Bol. Soc. Venez. Ci. Nat. 28: 145-178
  6. Chase, M. W., D. E. Soltis, R. G. Olmstead and D. Morgan et al. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard. 80: 528-580 https://doi.org/10.2307/2399846
  7. Chung, T. H. 1957. Korean Flora. Vol. I. Woody Plants. Sinjisa, Seoul (in Korean)
  8. Darwin, C. 1877. The Different Forms of Flowers on Plants of the Same Species. John Murray, London. Pp. 173-182
  9. De Azkue, D. 2000. Chromosome diversity of South American Oxalis (Oxalidaceae). Bot. J. Linn. Soc. 132: 143-152 https://doi.org/10.1111/j.1095-8339.2000.tb01210.x
  10. Denton, M. F. 1973. A monograph of Oxalis, section Ionoxalis (Oxalidaceae) in North America. Pub. Michigan State Dniv. Mus. Biol. Ser 4: 455-615
  11. Downie, S. R., D. S. Katz-Downie and K. Spalik. 2000. A phylogeny of Apiaceae tribe Scandiceae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot. 87: 76-95 https://doi.org/10.2307/2656687
  12. Doyle, J. J. and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus (Gibco BRL) 12: 13-15
  13. Emshwiller, E. 2002. Biogeography of the 'Oxalis tuberosa alliance'. Bot. Rev. 68: 128-152 https://doi.org/10.1663/0006-8101(2002)068[0128:BOTOTA]2.0.CO;2
  14. Emshwiller, E. and J. J. Doyle. 1998. Origins of domestication and polyploidy in oca (Oxalis tuberosa: Oxalidaceae): nrDNA ITS data. Amer. J. Bot. 85: 975-985 https://doi.org/10.2307/2446364
  15. Emshwiller, E. and J. J. Doyle. 2002. Origins of domestication and polyploidy in oca (Oxalis tuberosa: Oxalidaceae). 2. Chloroplast-expressed glutamine synthetase data. Amer. J. Bot. 89: 1042-1056 https://doi.org/10.3732/ajb.89.7.1042
  16. Farris, J. S. 1989a. The retention index and the resealed consistency index. Cladistics 5: 147-419
  17. Farris, J. S. 1989b. Hennig86, Version 1.5. Port Jefferson Station. NY
  18. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 789-791
  19. Gibson, T., D. Higgins and J. Thompson. 1994. Clustal X program. EMBL, Heidelberg, Germany
  20. Jansen, R. K. and J. D. Palmer. 1988. Phylogenetic implications of chloroplast DNA restriction site variation in the Mutisieae (Asteraceae). Amer. J. Bot. 75: 751-764
  21. Kim, K. J. and R. K. Jansen. 1994. Comparison of phylogenetic hypotheses among different data sets in darwf dandelion (Krigia, Asteraceae): additional information from internal transcribed of nuclear ribosomal DNA. Pl. Syst. Evol. 190: 157-185 https://doi.org/10.1007/BF00986191
  22. Kimura, M. 1980. A simple method for estimating evolutionary rate of the base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
  23. Knuth, R. 1930. Oxalidaceae. In Das Pfanzenreich, Regni vegetabllis conspectus, A. Engler (ed). Vol. 13. W. Engelmann, Leipzig, Germany. Pp. 1-481
  24. Lee, T. B. 1980a. Plant Taxonomy. Hyangmunsa, Seoul (in Korean)
  25. Lee, T. B. 1980b. Illustration Flora of Korea. Hyangmunsa, Seoul (in Korean)
  26. Linnaeus, C. 1753. Species Plantarum. p. 435
  27. Liston, A., W. A. Robinson, J. M. Oliphant and E. R. Alvarez-Buylla. 1996. ength variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Syst. Bot. 21: 109-120 https://doi.org/10.2307/2419742
  28. Lord, E. M. 1981. Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot. Rev. 47: 421-443 https://doi.org/10.1007/BF02860538
  29. Lourteig, A. 1988. Oxalidaceae. Flora Patagonia 8: 1-29
  30. Lourteig, A. 2000. Oxalis L. subgenero Monoxalis (Small) Lonrt., Oxalis Trifidus Lourt. Bradea 7: 201-629
  31. Macbride, J. F. 1943. Flora of Peru. In Field Museum of Natural History Botanical Series, Vol. XIII, part III. no. 1, Publication 531: 544-608
  32. Moller, M. and Q. C. B. Cronk. 1997. Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Amer. J. Bot. 84: 956-965 https://doi.org/10.2307/2446286
  33. Park, M. K. 1974. Keys to the Herbaceous Plants in Korea. Chungumsa, Seoul (in Korean)
  34. Park, S. H. 1995. Colored Illustrations of Naturalized Plants of Korea. Ilchokak, Seoul (in Korean)
  35. Salter, T. M. 1944. The genus Oxalis in South Africa, a taxonomic revision. J. South African Bot. (suppl.) 1: 1-355
  36. Shin, K.-S., Y. K. Shin, J.-W. Kim and K.-H. Tae. 2003. Phylogeny of the Genus Goodyera (Orchidaceae; Cranichideae) in Korea Based on Nuclear Ribosomal DNA ITS Region Sequences. J. Plant Biol. 45: 182-187 https://doi.org/10.1007/BF03030312
  37. Swofford, D. L. 1998. PAUP: Phylogenetic Analysis Using Parsimony and Other Methods. Version 4.02b. Sinauer Asso. Inc., Massachusetts
  38. Sytsma, K. J. and L. D. Gottlieb. 1986. Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia (Onagraceae). Proc. Natl. Acad. Sci. USA 83: 5554-5557
  39. Sytsma, K. J. and W. J. Hahn. 1996. Molecular systematics: 1994-1995. Prog. Bot. 58: 470-499
  40. Tosto, D. S. and H. E. Hopp. 1996. Sequence analysis of the 5.8S ribosomal DNA and internal transcribed spacers (ITS1 and ITS2) from five species of the Oxalis tuberosa alliance. DNA sequence-J. Seq. Map. 6: 361-364 https://doi.org/10.3109/10425179609047576
  41. White, T. J., T. Birn, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungla ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications. Innis, M. D. Gelfand, J. Sninsky and T. White (eds.), Academic Press, San Diego, Pp. 315-322
  42. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221-271