Effect of Oxygen Supply on the Production of Interferon ${\alpha}$-1 by Recombinant Escherichia coli in Fed-batch Fermentation

유가식 배양에서 재조합 대장균으로부터 Interferon ${\alpha}$-1 생산에 산소 공급이 미치는 영향

  • Yi, Jong-Ghil (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University) ;
  • Moon, Seok-Young (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University) ;
  • Kim, Young-Jun (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University) ;
  • Shin, Chul-Soo (Advanced Protein Technologies Corporation) ;
  • Koo, Yoon-Mo (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University)
  • 이종길 (인하대학교 생물공학과 및 초정밀생물분리기술연구센터) ;
  • 문석영 (인하대학교 생물공학과 및 초정밀생물분리기술연구센터) ;
  • 김영준 (인하대학교 생물공학과 및 초정밀생물분리기술연구센터) ;
  • 신철수 (에이피바이오텍) ;
  • 구윤모 (인하대학교 생물공학과 및 초정밀생물분리기술연구센터)
  • Published : 2007.09.28

Abstract

In order to achieve high-level expression of interferon-${\alpha}1$ (IFN-${\alpha}1$) during fed-batch fermentation of recombinant E. coli, effects of oxygen supply and induction temperature on the expression of recombinant proteins were evaluated. Supplementation of oxygen and its transfer into cells is one of the most important parameters involved in the design and operation of mixing-sparging equipment for bioreactors. Generally, higher oxygen supply stimulates cell growth of aerobic microorganism and consequently the amount of products is increased. In this study, the optimum aeration strategy for the higher production of IFN-${\alpha}1$ during fed-batch fermentation of recombinant E. coli was surveyed. The growth of the cells was also monitored with four different concentrations of dissolved oxygen (DO; limiting, 20%, 35%, 50%) conditions. The DO was controlled by varying aeration rates of air and pure oxygen. Oxygen uptake rate (OUR) and specific oxygen uptake rate (SOUR) were evaluated and compared for the enhanced growth and induction of the cells and IFN-${\alpha}1$, respectively. We confirmed that increased DO by additional oxygen supply, up to 35%, can improve the production of IFN-${\alpha}1$ during the fermentation.

산소를 많이 소비하는 발효공정일수록 배양액중의 용존산소의 농도가 목적생산물의 생산성에 많은 영향을 주는 경우가 많다. 때문에 고농도 발효에 앞서, 발효조의 sparging hole로부터 임펠러 높이에 따른 산소전달 능력을 알아본 결과 공기공급이 1 vvm, 교반속도가 600 rpm에서 산소전달계수($K_La$)는 2.67($min^{-1}$)으로 가장 높았다. 배양 시 용존산소 농도를 20% 이상 유지시켰을 때 온도에 따른 k6ub/IFN-${\alpha}1$ 생성은 $30^{\circ}C$에서 세포증식을 하고 $25^{\circ}C$에서 IPTG로 Induction 하였을 때 발현율이 6.43mg/ml로 total protein의 37%로 가장 많은 양이 발현되는 것을 알 수 있었다. 용존산소 농도에 따른 k6ub/IFN-${\alpha}1$의 발현양은 용존산소 농도가 35%일 때 가장 높은 수율을 나타냈다. 용존산소량은 산소소비 속도를 측정함으로써 정확한 임계점을 찾을 수 있었는데 용존산소량이 35% 유지될 때 산소 전달 속도와 비교하여 가장 적당한 산소공급량임을 확인할 수 있었다.

Keywords

References

  1. Babu, R. and S. Swaminathan. 2000. production of interferon-a in high cell density culture of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins, Microbiol Biotechnol, 53: 655-660 https://doi.org/10.1007/s002530000318
  2. Chen, C. G 1997. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines, Journal of Industrial Microbiology & Biotechnology, 18: 43-48 https://doi.org/10.1038/sj.jim.2900355
  3. Emilio Gomez, Victoria E. Santos, and Almudena Alcon. 2006. Oxygen-Uptake and Mass-Transfer Rates on the Growth of Pseudomonas putida CECT5279: Influence on Biodesu1furization (BDS) Capability, Energy & Fuels, 20: 1565-1571 https://doi.org/10.1021/ef050362y
  4. Jeong, K. J. and S. Y. Lee. 1999. High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its puri.cation. Appl. Environ. Microbiol. 65: 3027-3032
  5. Kim, B. S. and L. Seung Chu. 2004. High cell density fedbatch cultivation of Escherichia coli using exponential feeding combined with pH-stat, Bioprocess. Biosyst. Eng., 26: 147-150 https://doi.org/10.1007/s00449-003-0347-8
  6. Kim, S. S. 1995. Effects of Specific Growth rate on the High Cell Density Cultivation of Lipase-producing Recombinant Escherichia coli, M. S. Thesis, Dept. of Microbiology, Inha University, Incheon
  7. Lee, S. Y. 1996. High-cell-density culture of Escherichia coli, TIBTECH, 14: 98-105 https://doi.org/10.1016/0167-7799(96)80930-9
  8. Motarjerni, M. and G. J. Jameson. 1978. Mass transfer from very small bubbles-the optimum bubble size for aeration, Chem. Eng. Sci. 33: 1415-1423 https://doi.org/10.1016/0009-2509(78)85190-2
  9. Rabhi-Essafi, I. and A. Sadok. 2007. A strategy for highlevel expression of soluble and functional human interferon a as a GST-fusion protein in Ecoli, Protein Engineering, Design & Selection, pp. 1-9
  10. Risenberg, D., B. Schulz, W.A. Knorre, and H.-D. Pohl 1991. High-cell-density cultivation of Escherichia coli at controlled specific growth rate, J. Biotechnol., 20: 17-28 https://doi.org/10.1016/0168-1656(91)90032-Q
  11. Shin, C. -S., H, Min Seon. 1997. Enhanced Production of Human Mini-Proinsulin in Fed-Batch Cultures at High Cell Density of Escherichia coli BL21 (DE3)[pET-3aT2M2], Biotechnol. Prog, 13: 249-257 https://doi.org/10.1021/bp970018m
  12. S. Shams Yazdani, and A. Rushdi Shakri. 2004. A high cell density fermentation strategy to produce recombinant malarial antigen in E. coli, Biotechnology, Letters 26: 1891-1895 https://doi.org/10.1007/s10529-004-6040-4
  13. Vee, L. and H. W Banch. 1993. Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli, Biotechnol, and Bioeng., 41: 781-790 https://doi.org/10.1002/bit.260410804