유방보존술 후 내유림프절 방사선 조사: 방사선 폐렴과 체적-선량 히스토그램 변수들

Internal Mammary Lymph Node Irradiation after Breast Conservation Surgery: Radiation Pneumonitis versus Dose-Volume Histogram Parameters

  • 김주영 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 이익재 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 금기창 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 김용배 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 심수정 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 정경근 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 김종대 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 서창옥 (연세대학교 의과대학 연세암센터 방사선종양학교실)
  • Kim, Joo-Young (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Lee, Ik-Jae (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Keum, Ki-Chang (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Kim, Yong-Bae (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Shim, Su-Jung (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Jeong, Kyoung-Keun (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Kim, Jong-Dae (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Suh, Chang-Ok (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center)
  • 발행 : 2007.12.30

초록

목적: 방사선 폐렴과 체적-선량 히스토그램(dose-volume hlstogram, DVH) 변수들 사이의 연관성을 평가하고, 내유림프절이 포함된 유방암의 방사선치료에서 방사선 폐렴을 방지할 수 있는 실제적인 지침을 제공하고자 한다. 대상 및 방법: 부분유방절제술을 받은 초기 유방암 환자 20명이 본 연구에 포함되었다. 전체 유방, 상부쇄골림프절, 내유림프절에 총 28회 50.4 Gy가 조사되었다. 방사선 폐렴은 방사선 영상에서의 폐 변화(radiological pulmonary change; RPC)와 증상이 있는 방사선 폐렴(symptomatic radiation pneumonitis)에 의해 평가되었다 DVH 변수들은 grade<2 RPC와 grade${\geq}$2 RPC로 나누어 비교되었다. 이 때, DVH 변수들은 평균 폐 선량(mean lung dose), V10 (10 Gy 이상 받는 폐의 백분율 부피), V20, V30, V40, 그리고 정상 조직 합병증 확률(normal tissue complication probability, NTCP)이다. 결 과: 20명의 환자 중 9명(45%)에서 grade 2 RPC가 발생하였고, 11명(55%)에서는 발생하지 않았다 1명의 환자에서 grade 1의 증상이 있는 방사선 폐렴이 발생하였다. 단변량 분석에서 DVH 변수 중, NTCP가 두 RPC grade군 간에 유의한 차이를 보여주고 있다 (p<0.05) Fisher의 정확한 검증(exact test)은 NTCP값 45%가 RPC의 threshold level로서 적합함을 보여준다. 결 론: 본 연구는 NTCP가 유방암의 내유림프절 방사선치료 후 RPC 예측인자 중 한가지로 쓰일 수 있음을 보여준다. 임상적으로 이는 NTCP 45% 이상에서 RPC가 발생하기 용이함을 의미한다.

Purpose: To evaluate the association between radiation pneumonitis and dose-volume histogram parameters and to provide practical guidelines to prevent radiation pneumonitis following radiotherapy administered for breast cancer including internal mammary lymph nodes. Materials and Methods: Twenty patients with early breast cancer who underwent a partial mastectomy were involved in this study. The entire breast, supraclavicular lymph nodes, and internal mammary lymph nodes were irradiated with a dose of 50.4 Gy in 28 fractions. Radiation pneumonitis was assessed by both radiological pulmonary change (RPC) and by evaluation of symptomatic radiation pneumonitis. Dose-volume histogram parameters were compared between patients with grade <2 RPC and those with grade ${\geq}$2 RPC. The parameters were the mean lung dose, V10 (percent lung volume receiving equal to and more than 10 Gy), V20, V30, V40, and normal tissue complication probability (NTCP). Results: Of the 20 patients, 9 (45%) developed grade 2 RPC and 11 (55%) did not develop RPC (grade 0). Only one patient developed grade 1 symptomatic radiation pneumonitis. Univariate analysis showed that among the dose-volume histogram parameters, NTCP was significantly different between the two RPC grade groups (p<0.05). Fisher's exact test indicated that an NTCP value of 45% was appropriate as an RPC threshold level. Conclusion: This study shows that NTCP can be used as a predictor of RPC after radiotherapy of the internal mammary lymph nodes in breast cancer. Clinically, it indicates that an RPC is likely to develop when the NTCP is greater than 45%.

키워드

참고문헌

  1. Freedman GM, Fowble BL, Nicolaou N, et al. Should internal mammary lymph nodes in breast cancer be a target for the radiation oncologist? Int J Radiat Oncol Biol Phys 2000; 46:805-814 https://doi.org/10.1016/S0360-3016(99)00481-2
  2. Grabenbauer GG. Internal mammary nodes in invasive breast carcinoma; to treat or not to treat? Strahlenther Onkol 2004;180:690-694 https://doi.org/10.1007/s00066-004-9193-0
  3. Taghian A, Jagsi R, Makris A, et al. Results of a survey regarding irradiation of internal mammary chain in patients with breast cancer: practice is culture driven rather than evidence based. Int J Radiat Oncol Biol Phys 2004;60:706-714 https://doi.org/10.1016/j.ijrobp.2004.04.027
  4. Munzenrider JE, Tchakarova I, Castro M, Carter B. Computerized body tomography in breast cancer. Internal mammary nodes and radiation treatment planning. Cancer 1979;43:137-150 https://doi.org/10.1002/1097-0142(197901)43:1<137::AID-CNCR2820430121>3.0.CO;2-#
  5. Arthur DW, Arnfield MR, Warwicke LA, Morris MM, Zwicker RD. Internal mammary node coverage: an investigation of presently accepted techniques. Int J Radiat Oncol Biol Phys 2000;48:139-146 https://doi.org/10.1016/S0360-3016(00)00633-7
  6. Pierce LJ, Butler JB, Martel MK, et al. Postmastectomy radiotherapy of the chest wall: dosimetric comparison of common techniques. Int J Radiat Oncol Biol Phys 2002;52: 1220-1230 https://doi.org/10.1016/S0360-3016(01)02760-2
  7. Rodrigues G, Lock M, D'Souza D, Yu E, Van Dyk J. Prediction of radiation pneumonitis by dose-volume histogram parameters in lung cancer-a systematic review. Radiother Oncol 2004;71:127-138 https://doi.org/10.1016/j.radonc.2004.02.015
  8. Kwa SLS, Lebesque JV, Theuws JCM, et al. Radiation Pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 1998;42:1-9
  9. Rancati T, Wennberg B, Lind P, Svane G, Gagliardi G. Early clinical and radiological pulmonary complications following breast cancer radiation therapy: NTCP fit with four different models. Radiother Oncol 2007;82:308-31 https://doi.org/10.1016/j.radonc.2006.12.001
  10. Tsougos I, Mavroidis P, Rajala J, et al. Evaluation of dose-response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy. Phys Med Biol 2005;50:3535-3554 https://doi.org/10.1088/0031-9155/50/15/004
  11. Seppenwoolde Y, Lebesque JV, de Jaeger K, et al. Comparing different NTCP models that predict the incidence of radiation pneumonitis. Int J Radiat Oncol Biol Phys 2003;55: 724-735 https://doi.org/10.1016/S0360-3016(02)03986-X
  12. Arriagada R, de Guevara JC, Mouriesse H, et al. Limited small cell lung cancer treated by combined radiotherapy and chemotherapy: evaluation of a grading system of lung fibrosis. Radiother Oncol 1989;14:1-8 https://doi.org/10.1016/0167-8140(89)90002-9
  13. Jarvenpaa R, Holli K, Pitkanen M, et al. Radiological pulmonary findings after breast cancer irradiation: a prospective study. Acta Oncologica 2006;45:16-22 https://doi.org/10.1080/02841860500334921
  14. RTOG/EORTC Late radiation morbidity scoring criteria: http:// www.rtog.org/members/toxicity/late.html
  15. Kutcher GJ, Burman C. Calculation of complication probability for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 1989;16:1623-1630 https://doi.org/10.1016/0360-3016(89)90972-3
  16. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991;21:123-135 https://doi.org/10.1016/0360-3016(91)90172-Z
  17. Jeong KK, Suh CO, Keum KC, et al. A study for techniques of radiation treatment including internal mammary nodes after breast conservation surgery (Abstract). J Korean Soc Ther Radiol 2005;23:105, (Suppl)
  18. Schratter-Sehn AU, Schurawitzki M, Zach M, Schratter M. High-resolution computed tomography of the lungs in irradiated breast cancer patients. Radiother Oncol 1993;27: 198-202 https://doi.org/10.1016/0167-8140(93)90074-I
  19. Wennberg B, Gagliardi G, Sundbom L, Svane G, Lind P. Early response of lung in breast cancer irradiation: radiologic density changes measured by CT and symptomatic radiation pneumonitis. Int J Radiat Oncol Biol Phys 2002;52: 1196-1206 https://doi.org/10.1016/S0360-3016(01)02770-5
  20. Lingos TI, Recht A, Vicini F, Abner A, Silver B, Harris JR. Radiation pneumonitis in breast cancer patients treated with conservation surgery and radiation therapy. Int J Radiat Oncol Biol Phys 1991;21:355-360 https://doi.org/10.1016/0360-3016(91)90782-Y
  21. Hernando ML, Marks LB, Bentel GC, et al. Radiation induced pulmonary toxicity: a dose–volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001;51:650-659 https://doi.org/10.1016/S0360-3016(01)01685-6
  22. Oetzel D, Schraube P, Hensley F, Sroka-Perez, G, Menke M, Flentje M. Estimation of pneumonitis risk in three-dimensional treatment planning using dose–volume histogram analysis. Int J Radiat Oncol Biol Phys 1995;33:455- 460 https://doi.org/10.1016/0360-3016(95)00009-N