Investigation of ${\beta}$-Lactamase-producing Multidrug-resistant Pseudomonas aeruginosa Isolated from Non-Tertiary Care Hospitals in Korea

  • Sohn, Eui-Suk (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health) ;
  • Yoo, Jeong-Sik (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health) ;
  • Lee, Jeom-Kyu (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health) ;
  • Lee, Kyeong-Min (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health) ;
  • Chung, Gyung-Tae (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health) ;
  • Shin, Eun-Shim (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health) ;
  • Han, Sun-Young (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health) ;
  • Lee, Sang-Hee (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University) ;
  • Kim, Joon (Department of Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Yeong-Seon (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
  • Published : 2007.10.30

Abstract

A total of 2,280 nonduplicate clinical isolates of Pseudomonas aeruginosa, obtained nationwide from Korean non-tertiary care hospitals from 2002 to 2005, were identified and their susceptibilities to aminoglycosides, antipseudomonal penicillins, carbapenems, cephalosporins, monobactams, and quinolones were studied, together with their production of ${\beta}$-lactamases. Using disk diffusion and minimum inhibitory concentration tests, it was found that 2.9% of isolates were multidrug-resistant (MDR) P. aeruginosa. An EDTA-disk synergy test, PCR amplification with specifically designed primers, and direct sequencing of the PCR products showed that the $bla_{OXA-10}$, $bla_{VIM-2}$, $bla_{OXA-2}$, $bla_{OXA-17}$, $bla_{PER-1}$, $bla_{SHV-12}$, and $bla_{IMP-1}$ genes were carried by 34.3%, 26.9%, 3.0%,3.0%, 1.5%, 1.5%, and 1.5% of 67 MDR P. aeruginosa isolates, respectively. The prevalence of MDR P. aeruginosa was three-fold higher, compared with that from the United States. More than two types of ${\beta}$-lactamase genes were carried by 10.4% of isolates. The most prevalent ${\beta}$-lactamase genes were $bla_{VIM-2}$ and $bla_{OXA-10}$. This study is the first description of MDR P. aeruginosa trom non-tertiary care hospitals in Korea and the coexistence of the $bla_{VIM-2}$, $bla_{IMP-1}$, or $bla_{PER-1} in these clinical isolates.

Keywords

References

  1. Baddour, L. M., D. V. Hicks, M. M. Tayidi, S. K. Roberts, E. Walker, R. J. Smith, D. S. Sweitzer, J. A. Herrington, and B. G. Painter. 1995. Risk factor assessment for the acquisition of fluoroquinolone-resistant isolates of Pseudomonas aeruginosa in a community-based hospital. Microb. Drug Resist. 1: 219-222 https://doi.org/10.1089/mdr.1995.1.219
  2. Chastre, J. and J. L. Trouillet. 2000. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin. Respir. Infect. 15: 287-298 https://doi.org/10.1053/srin.2000.20944
  3. Cho, B. G., C. H. Kim, B. K. Lee, and S. H. Cho. 2005. Comparison of antibiotic resistance of blood culture strains and saprophytic isolates in the presence of biofilms, formed by the intercellular adhesion (ica) gene cluster in Staphylococcus epidermidis. J. Microbiol. Biotechnol. 15: 728-733
  4. Clinical and Laboratory Standards Institute (CLSI). 2006. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A6, 7th Ed. Clinical and Laboratory Standards Institute, Wayne, PA, U.S.A
  5. Falagas, M. E., P. K. Koletsi, and I. A. Bliziotis. 2006. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol. 55: 1619-1629 https://doi.org/10.1099/jmm.0.46747-0
  6. Ferrara, A. M. 2006. Potentially multidrug-resistant nonfermentative Gram-negative pathogens causing nosocomial pneumonia. Int. J. Antimicrob. Agents 27: 183-195 https://doi.org/10.1016/j.ijantimicag.2005.11.005
  7. Gales, A. C., R. N. Jones, J. Turnidge, R. Rennie, and R. Ramphal. 2001. Characterization of Pseudomonas aeruginosa isolates: Occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY antimicrobial surveillance program, 1997-1999. Clin. Infect. Dis. 32: S146-S155
  8. Hsu, D. I., M. P. Okamoto, R. Murthy, and A. Wong-Beringer. 2005. Fluoroquinolone-resistant Pseudomonas aeruginosa: Risk factors for acquisition and impact on outcomes. J. Antimicrob. Chemother. 55: 535-541 https://doi.org/10.1093/jac/dki026
  9. Jeong, S. H., I. K. Bae, S. G. Sohn, K. O. Park, Y. J. An, K. H. Sung, S. J. Jang, M. J. Heo, K. S. Yang, and S. H. Lee. 2006. First detection of $bla_{IMP-1}$ in clinical isolate multiresistant Acinetobacter baumannii from Korea J. Microbiol. Biotechnol. 16: 1377-1383
  10. Kiska, D. L. and P. H. Gilligan. 1999. Pseudomonas, pp. 517-525. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.), Manual of Clinical Microbiology, 7th Ed. American Society for Microbiology, Washington, DC, U.S.A
  11. Lee, K., Y. Chong, H. B. Shin, Y. A. Kim, D. Young, and J. H. Yum. 2000. Modified Hodge and EDTA-disk synergy tests to screen metallo-$\beta$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7: 88-102
  12. Lee, S., Y. J. Park, M. Kim, H. K. Lee, K. Han, C. S. Kang, and M. W. Kang. 2005. Prevalence of Ambler class A and D beta-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J. Antimicrob. Chemother. 56: 122-127 https://doi.org/10.1093/jac/dki160
  13. Lee, S. H., J. Y. Kim, G. S. Lee, S. H. Cheon, Y. J. An, S. H. Jeong, and K. J. Lee. 2002. Characterization of $bla_{CMY-11}$, an AmpC-type plasmid-mediated $\beta$-lactamase gene in a Korean clinical isolate of Escherichia coli. J. Antimicrob. Chemother. 49: 269-273 https://doi.org/10.1093/jac/49.2.269
  14. Lee, S. H., J. Y. Kim, S. K. Lee, W. Jin, and K. J. Lee. 2000. Discriminatory detection of extended-spectrum $\beta$-lactamases by restriction fragment length dimorphism-polymerase chain reaction. Lett. Appl. Microbiol. 31: 307-312 https://doi.org/10.1046/j.1472-765x.2000.00806.x
  15. Leibovici, L., I. Shraga, M. Drucker, H. Konigsberger, Z. Samra, and S. D. Pitlik. 1998. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J. Intern. Med. 244: 379-386 https://doi.org/10.1046/j.1365-2796.1998.00379.x
  16. Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa. Our worst nightmare? Clin. Infect. Dis. 34: 634-640 https://doi.org/10.1086/338782
  17. Lodise, T. P., C. D. Miller, J. Graves, J. P. Furuno, J. C. McGregor, B. Lomaestro, E. Graffunder, and L. A. McNutt. 2007. Clinical prediction tool to identify patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk for multidrug resistance. Antimicrob. Agents Chemother. 51: 417-422 https://doi.org/10.1128/AAC.00851-06
  18. Obritsch, M. D., D. N. Fish, R. MacLaren, and R. Jung. 2004. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother. 48: 4606-4610 https://doi.org/10.1128/AAC.48.12.4606-4610.2004
  19. Partridge, S. and R. M. Hall. 2003. In34, a complex In5 family class 1 integron containing orf513 and dfrA10. Antimicrob. Agents Chemother. 47: 342-349 https://doi.org/10.1128/AAC.47.1.342-349.2003
  20. Poirel, L., L. Cabanne, H. Vahaboglu, and P. Nordmann. 2005. Genetic environment and expression of the extendedspectrum $\beta$-lactamase $bla_PER-1}$ gene in Gram-negative bacteria. Antimicrob. Agents Chemother. 49: 1708-1713 https://doi.org/10.1128/AAC.49.5.1708-1713.2005
  21. Poirel, L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J.-D. Cavallo, and P. Nordmann. 2000. Characterization of VIM- 2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44: 891-897 https://doi.org/10.1128/AAC.44.4.891-897.2000
  22. Sekiguchi, J. I., T. Asagi, T. Miyoshi-Akiyama, A. Kasai, Y. Mizuguchi, M. Araake, T. Fujino, H. Kikuchi, S. Sasaki, H. Watari, T. Kojima, H. Miki, K. Kanemitsu, H. Kunishima, Y. Kikuchi, M. Kaku, H. Yoshikura, T. Kuratsuji, and T. Kirikae. 2007. Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan. J. Clin. Microbiol. 45: 979-989 https://doi.org/10.1128/JCM.01772-06
  23. Shin, H.-J., S.-K. Lee, J. J. Choi, S. Koh, J.-H. Lee, S.-J. Kim, and S. T. Kwon. 2005. Cloning, expression, and characterization of a family B-type DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum arsenaticum and its application to PCR. J. Microbiol. Biotechnol. 15: 1359-1367
  24. Trick, W. E., C. M. Kioski, K. M. Howard, G. D. Cage, J. I. Tokars, B. M. Yen, and W. R. Jarvis. 2000. Outbreak of Pseudomonas aeruginosa ventriculitis among patients in a neurosurgical intensive care unit. Infect. Control Hosp. Epidemiol. 21: 204-208 https://doi.org/10.1086/501745
  25. Vahaboglu, H., R. Ozturk, H. Akbal, S. Saribas, O. Tansel, and F. Coskunkan. 1998. Practical approach for detection and identification of OXA-10-derived ceftazidime hydrolyzing extended-spectrum beta-lactamases. J. Clin. Microbiol. 36: 827-829
  26. Weldhagen, G. F., B. Kim, C.-H. Cho, and S. H. Lee. 2006. Definitive nomenclature of GES/IBC-type extended-spectrum $\beta$-lactamases. J. Microbiol. Biotechnol. 16: 1837-1840