Differential Expression of Kidney Proteins in Streptozotocin-induced Diabetic Rats in Response to Hypoglycemic Fungal Polysaccharides

  • Hwang, Hye-Jin (Proteome Research Laboratory, Department of Biotechnology, Daegu University) ;
  • Baek, Yu-Mi (Proteome Research Laboratory, Department of Biotechnology, Daegu University) ;
  • Kim, Sang-Woo (Proteome Research Laboratory, Department of Biotechnology, Daegu University) ;
  • Kumar, G. Suresh (Proteome Research Laboratory, Department of Biotechnology, Daegu University) ;
  • Cho, Eun-Jae (Proteome Research Laboratory, Department of Biotechnology, Daegu University) ;
  • Oh, Jung-Young (Proteome Research Laboratory, Department of Biotechnology, Daegu University) ;
  • Yun, Jong-Won (Proteome Research Laboratory, Department of Biotechnology, Daegu University)
  • Published : 2007.12.31

Abstract

Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.

Keywords

References

  1. Arthur, J. M. 2003. Proteomics. Curr. Opin. Nephrol. Hypertens. 12: 423-430 https://doi.org/10.1097/00041552-200307000-00011
  2. Bansal, V., J. Kalita, and U. K. Misra. 2006. Diabetic neuropathy. Postgrad. Med. J. 82: 95-100 https://doi.org/10.1136/pgmj.2005.036137
  3. Brownlee, M., A. Cerami, and H. Vlassara. 1988. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318: 1315- 1321 https://doi.org/10.1056/NEJM198805193182007
  4. Bulteau, A. L., M. Ikeda-Saito, and L. I. Szweda. 2003. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry 42: 14846-14855 https://doi.org/10.1021/bi0353979
  5. Catalano, C. and S. M. Marshall. 1992. Epidemiology of end-stage renal disease in patients with diabetes mellitus: From the dark ages to the middle ages. Nephrol. Dial. Transplant. 7: 181-190 https://doi.org/10.1093/oxfordjournals.ndt.a092103
  6. Cooper, M. E. 1998. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352: 213-219 https://doi.org/10.1016/S0140-6736(98)01346-4
  7. Cooper, M. E. 2001. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 44: 1957-1972 https://doi.org/10.1007/s001250100000
  8. Czekalski, S. 2005. Diabetic nephropathy and cardiovascular diseases. Rocz. Akad. Med. Bialymst. 50: 122-125
  9. de Rijk, E. P., W. T. Ravesloot, Y. Wijnands, and E. van Esch. 2003. A fast histochemical staining method to identify hyaline droplets in the rat kidney. Toxicol. Pathol. 31: 462-464 https://doi.org/10.1080/01926230390213775
  10. Dihazi, H., A. R. Asif, N. K. Agarwal, Y. Doncheva, and G. A. Muller. 2005. Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle's loop (TALH) cells. Mol. Cell Proteomics 4: 1445-1458 https://doi.org/10.1074/mcp.M400184-MCP200
  11. Dunlop, M. 2000. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. 58: S3- S12
  12. Haneda, M., S. Araki, M. Togawa, T. Sugimoto, M. Isono, and R. Kikkawa. 1997. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 46: 847-853 https://doi.org/10.2337/diabetes.46.5.847
  13. Han, S. Y., G. A. So, Y. H. Jee, K. H. Han, Y. S. Kang, H. K. Kim, S. W. Kang, D. S. Han, J. Y. Han, and D. R. Cha. 2004. Effect of retinoic acid in experimental diabetic nephropathy. Immunol. Cell Biol. 82: 568-576 https://doi.org/10.1111/j.1440-1711.2004.01287.x
  14. Heese, K., K. F. Beck, M. H. Behrens, K. Pluss, W. Fierlbeck, A. Huwiler, H. Muhl, H. Geiger, U. Otten, and J. Pfeilschifter. 2003. Effects of high glucose on cytokineinduced nerve growth factor (NGF) expression in rat renal mesangial cells. Biochem. Pharmacol. 65: 293-301 https://doi.org/10.1016/S0006-2952(02)01487-9
  15. He, Y., J. Liu, D. Durrant, H. S. Yang, T. Sweatman, L. Lothstein, and R. M. Lee. 2005. N-Benzyladriamycin-14- valerate (AD198) induces apoptosis through protein kinase C-delta-induced phosphorylation of phospholipid scramblase 3. Cancer Res. 65: 10016-10023 https://doi.org/10.1158/0008-5472.CAN-05-1688
  16. Hong, C. Y. and K. S. Chia. 1998. Markers of diabetic nephropathy. J. Diabetes Complications 12: 43-60 https://doi.org/10.1016/S1056-8727(97)00045-7
  17. Hwa, J. S., H. J. Park, J. H. Jung, S. C. Kam, H. C. Park, C. W. Kim, K. R. Kang, J. S. Hyun, and K. H. Chung. 2005. Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J. Korean Med. Sci. 20: 450-455 https://doi.org/10.3346/jkms.2005.20.3.450
  18. Hwang, H. J., S. W. Kim, J. M. Lim, J. H. Joo, H. O. Kim, H. M. Kim, and J. W. Yun. 2005. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats. Life Sci. 76: 3069-3080 https://doi.org/10.1016/j.lfs.2004.12.019
  19. Isshiki, K., M. Haneda, D. Koya, S. Maeda, T. Sugimoto, and R. Kikkawa. 2000. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes 49: 1022-1032 https://doi.org/10.2337/diabetes.49.6.1022
  20. Khegay, I. I. and A. V. Katokhin. 2004. Expression of tropomyosin-encoding gene in the kidney depends on functioning of vasopressin gene. Biochem. Genet. 42: 61- 67 https://doi.org/10.1023/B:BIGI.0000012144.85042.2e
  21. Kiersztan, A., A. Modzelewska, R. Jarzyna, E. Jagielska, and J. Bryla. 2002. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem. Pharmacol. 63: 1371-1382 https://doi.org/10.1016/S0006-2952(02)00861-4
  22. Kiho, T., A. Yamane, J. Hui, S. Usui, and S. Ukai. 1996. Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol. Pharm. Bull. 19: 294-296 https://doi.org/10.1248/bpb.19.294
  23. Kiho, T., H. Morimoto, M. Sakushima, S. Usui, and S. Ukai. 1995. Polysaccharides in fungi. XXXV. Anti diabetic activity of an acidic polysaccharide from the fruiting bodies of Tremella aurantia. Biol. Pharm. Bull. 18: 1627-1629 https://doi.org/10.1248/bpb.18.1627
  24. Kikkawa, R., K. Umemura, M. Haneda, T. Arimura, K. Ebata, and Y. Shigeta. 1987. Evidence for existence of polyol pathway in cultured rat mesangial cells. Diabetes 36: 240-243 https://doi.org/10.2337/diabetes.36.2.240
  25. Kim, D. H., B. K. Yang, S. C. Jeong, N. J. Hur, S. Das, J. W. Yun, J. W. Choi, Y. S. Lee, and C. H. Song. 2001. A preliminary study on the hypoglycemic effect of the exopolymers produced by five different medicinal mushrooms. J. Microbiol. Biotechnol. 11: 167-171
  26. Kim, S. W., H. J. Hwang, E. J. Cho, J. Y. Oh, Y. M. Baek, J. W. Choi, and J. W. Yun. 2006. Time-dependent plasma protein changes in streptozotocin-induced diabetic rats before and after fungal polysaccharide treatments. J. Proteome Res. 5: 2966-2976 https://doi.org/10.1021/pr0602601
  27. Kim, S. W., H. J. Hwang, H. M. Kim, M. C. Lee, M. S. Lee, J. W. Choi, and J. W. Yun. 2006. Effect of fungal polysaccharides on the modulation of plasma proteins in streptozotocin-induced diabetic rats. Proteomics 6: 5291- 5302 https://doi.org/10.1002/pmic.200500933
  28. Knepper, M. A. 2002. Proteomics and the kidney. J. Am. Soc. Nephrol. 13: 1398-1408 https://doi.org/10.1097/01.ASN.0000014782.37591.C7
  29. Koo, J. H., W. J. Chae, J. M. Choi, H. W. Nam, T. Morio, Y. S. Kim, Y. S. Jang, K. Y. Choi, J. J. Yang, and S. K. Lee. 2006. Proteomic analysis of resting and activated human CD8+ T cells. J. Microbiol. Biotechnol. 16: 911-920
  30. Kowluru, R. A. 2005. Diabetic retinopathy: Mitochondrial dysfunction and retinal capillary cell death. Antioxid. Redox Signal. 7: 1581-1587 https://doi.org/10.1089/ars.2005.7.1581
  31. Koya, D. and G. L. King. 1998. Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859-866 https://doi.org/10.2337/diabetes.47.6.859
  32. Lafitte, D., B. Dussol, S. Andersen, A. Vazi, P. Dupuy, O. N. Jensen, Y. Berland, and J. M. Verdier. 2002. Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to patient samples. Clin. Biochem. 35: 581-589 https://doi.org/10.1016/S0009-9120(02)00362-4
  33. Lee, H. B., H. Ha, S. I. Kim, and F. N. Ziyadeh. 2000. Diabetic kidney disease research at the turn of the century. Kidney Int. 58: S1-S2
  34. Lemieux, G., M. R. Aranda, P. Fournel, and C. Lemieux. 1984. Renal enzymes during experimental diabetes mellitus in the rat. Role of insulin, carbohydrate metabolism, and ketoacidosis. Can. J. Physiol. Pharmacol. 62: 70-75 https://doi.org/10.1139/y84-010
  35. Leung, J. C., L. Y. Chan, A. W. Tsang, S. C. Tang, and K. N. Lai. 2005. Differential expression of aquaporins in the kidneys of streptozotocin-induced diabetic mice. Nephrology (Carlton) 10: 63-72 https://doi.org/10.1111/j.1440-1797.2005.00359.x
  36. Lee, K., H. S. Joo, Y. H. Yang, E. J. Song, and B. G. Kim. 2006. Proteomics for Streptomyces: 'Industrial proteomics' for antibiotics. J. Microbiol. Biotechnol. 16: 331-348
  37. Lee, S. Y. and D. Jeoung. 2007. The reverse proteomics for identification of tumor antigens. J. Microbiol. Biotechnol. 17: 879-890
  38. Liu, J., Q. Dai, J. Chen, D. Durrant, A. Freeman, T. Liu, D. Grossman, and R. M. Lee. 2003. Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol. Cancer Res. 1: 892-902
  39. MacDonald, M. J. 1981. High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islet and its inhibition by diazoxide. J. Biol. Chem. 256: 8287-8290
  40. Mende, C. W. 2006. Improving antihypertensive therapy in patients with diabetic nephropathy. South. Med. J. 99: 150- 157 https://doi.org/10.1097/01.smj.0000198494.74169.4e
  41. Merchant, M. L. and J. B. Klein. 2005. Proteomics and diabetic nephropathy. Curr. Diab. Rep. 5: 464-469 https://doi.org/10.1007/s11892-005-0056-6
  42. Mischak, H., T. Kaiser, M. Walden, M. Hillmann, S. Wittke, A. Herrmann, S. Knueppel, H. Haller, and D. Fliser. 2004. Proteomic analysis for the assessment of diabetic renal damage in humans. Clin. Sci. (Lond.) 107: 485-495 https://doi.org/10.1042/CS20040103
  43. Mizuno, S., J. Wen, and Y. Mizuno-Horikawa. 2004. Repeated streptozotocin injections cause early onset of glomerulosclerosis in mice. Exp. Anim. 53: 175-180 https://doi.org/10.1538/expanim.53.175
  44. Mogensen, C. E., C. K. Christensen, and E. Vittinghus. 1983. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32: 64-78 https://doi.org/10.2337/diab.32.2.S64
  45. Neuhaus, O. W., W. Flory, N. Biswas, and C. E. Hollerman. 1981. Urinary excretion of ${\alpha}_{2u}$-globulin and albumin by adult male rats following treatment with nephrotoxic agents. Nephron 28: 133-140 https://doi.org/10.1159/000182134
  46. Obineche, E. N., E. Mensah-Brown, S. I. Chandranath, K. Arafar, and A. Adem. 2001. Loss of kidney IGF-1 receptors in experimental long-term diabetic rats. Endocr. Res. 27: 293-302 https://doi.org/10.1081/ERC-100106006
  47. Parving, H. H., R. Osterby, and E. Jr. Ritz. 2000. Diabetic nephropathy, pp. 1731-1773. In B. M. Brenner and S. Levine (eds.), The Kidney. W.B. Saunders Co., Philadelphia
  48. Peppa, M. and H. Vlassara. 2005. Advanced glycation end products and diabetic complications: A general overview. Hormones 4: 28-37 https://doi.org/10.14310/horm.2002.11140
  49. Ransom, R. F., V. Vega-Warner, W. E. Smoyer, and J. Klein. 2005. Differential proteomic analysis of proteins induced by glucocorticoids in cultured murine podocytes. Kidney Int. 67: 1275-1285 https://doi.org/10.1111/j.1523-1755.2005.00205.x
  50. Ravi, K., B. Ramachandran, and S. Subramanian. 2004. Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 27: 1212-1217 https://doi.org/10.1248/bpb.27.1212
  51. Raza, H., I. Ahmed, A. John, and A. K. Sharma. 2000. Modulation of xenobiotic metabolism and oxidative stress in chronic streptozotocin-induced diabetic rats fed with Momordica charantia fruit extract. J. Biochem. Mol. Toxicol. 14: 131-139 https://doi.org/10.1002/(SICI)1099-0461(2000)14:3<131::AID-JBT2>3.0.CO;2-Q
  52. Raza, H., I. Ahmed, and A. John. 2004. Tissue specific expression and immunohistochemical localization of glutathione S-transferase in streptozotocin induced diabetic rats: Modulation by Momordica charantia (karela) extract. Life Sci. 74: 1503-1511 https://doi.org/10.1016/j.lfs.2003.08.023
  53. Rosen, P. and N. F. Wiernsperger. 2006. Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress. Diabetes Metab. Res. Rev. 22: 323-330 https://doi.org/10.1002/dmrr.623
  54. Sarto, C., A. Marocchi, J. C. Sanchez, D. Giannone, S. Frutiger, O. Golaz, M. R. Wilkins, G. Doro, F. Cappellano, G. Hughes, D. F. Hochstrasser, and P. Mocarelli. 1997. Renal cell carcinoma and normal kidney protein expression. Electrophoresis 18: 599-604 https://doi.org/10.1002/elps.1150180343
  55. Schrijvers, B. F., A. S. De Vriese, and A. Flyvbjerg. 2004. From hyperglycemia to diabetic kidney disease: The role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr. Rev. 25: 971-1010 https://doi.org/10.1210/er.2003-0018
  56. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858 https://doi.org/10.1021/ac950914h
  57. Sims, P. J. and T. Wiedmer. 2001. Unraveling the mysteries of phospholipid scrambling. Thromb. Haemost. 86: 266-275 https://doi.org/10.1055/s-0037-1616224
  58. Sonta, T., T. Inoguchi, S. Matsumoto, K. Yasukawa, M. Inuo, H. Tsubouchi, N. Sonoda, K. Kobayashi, H. Utsumi, and H. Nawata. 2005. In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker. Biochem. Biophys. Res. Commun. 330: 415-422 https://doi.org/10.1016/j.bbrc.2005.02.174
  59. Stewart, W. 2001. Structural basis for bending tropomyosin around actin in muscle. Proc. Natl. Acad. Sci. USA 98: 8165-8166
  60. Suzuki, D., T. Miyata, N. Saotome, K. Horie, R. Inagi, Y. Yasuda, K. Uchida, Y. Izuhara, M. Yagame, H. Sakai, and K. Kurokawa. 1999. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J. Am. Soc. Nephrol. 10: 822-832
  61. Suzuki, K., Y. H. Koh, H. Mizuno, R. Hamaoka, and N. Taniguchi. 1998. Overexpression of aldehyde reductase protects PC12 cells from the cytotoxicity of methylglyoxal or 3-deoxyglucosone. J. Biochem. (Tokyo) 123: 353-357 https://doi.org/10.1093/oxfordjournals.jbchem.a021944
  62. Taboas, J. O. and R. J. Ceremsak. 1967. A rapid hematoxylin and eosin stain. Tech. Bull. Regist. Med. Technol. 37: 119- 120
  63. Thongboonkerd, V. 2004. Proteomics in nephrology: Current status and future directions. Am. J. Nephrol. 24: 360-378 https://doi.org/10.1159/000079148
  64. Thongboonkerd, V., M. T. Barati, K. R. McLeish, W. M. Pierce, P. N. Epstein, and J. B. Klein. 2004. Proteomics and diabetic nephropathy. Contrib. Nephrol. 141: 142-154
  65. Thongboonkerd, V. and P. Malasit. 2005. Renal and urinary proteomics: Current applications and challenges. Proteomics 5: 1033-1042 https://doi.org/10.1002/pmic.200401012
  66. Tolman, K. G. and J. Chandramouli. 2003. Hepatotoxicity of the thiazolidinediones. Clin. Liver Dis. 7: 369-379 https://doi.org/10.1016/S1089-3261(03)00020-5
  67. Turko, I. V. and F. Murad. 2003. Quantitative protein profiling in heart mitochondria from diabetic rats. J. Biol. Chem. 278: 35844-35849 https://doi.org/10.1074/jbc.M303139200
  68. Tuttle, K. R., E. C. Johnson, S. K. Cooney, R. J. Anderberg, E. K. Johnson, G. D. Clifton, and R. L. Meek. 2005. Amino acids injure mesangial cells by advanced glycation end products, oxidative stress, and protein kinase C. Kidney Int. 67: 953-968 https://doi.org/10.1111/j.1523-1755.2005.00159.x
  69. Van Buren, P., K. A. Palmiter, and D. W. Warshaw. 1999. Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. Proc. Natl. Acad. Sci. USA 96: 12488-12493
  70. Vincent, A. M., L. L. McLean, C. Backus, and E. L. Feldman. 2005. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 19: 638-640 https://doi.org/10.1096/fj.04-2513fje
  71. Wallner, E. I., J. Wada, G. Tramonti, S. Lin, S. K. Srivastava, and Y. S. Kanwar. 2001. Relevance of aldo-keto reductase family members to the pathobiology of diabetic nephropathy and renal development. Ren. Fail. 23: 311-320 https://doi.org/10.1081/JDI-100104715
  72. Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre, R. Bangham, R. Benito, J. D. Boeke, H. Bussey, A. M. Chu, C. Connelly, K. Davis, F. Dietrich, S. W. Dow, M. El Bakkoury, F. Foury, S. H. Friend, E. Gentalen, G. Giaever, J. H. Hegemann, T. Jones, M. Laub, H. Liao, N. Liebundguth, D. J. Lockhart, A. Lucau-Danila, M. Lussier, N. M'Rabet, P. Menard, M. Mittmann, C. Pai, C. Rebischung, J. L. Revuelta, L. Riles, C. J. Roberts, P. Ross- MacDonald, B. Scherens, M. Snyder, S. Sookhai-Mahadeo, R. K. Storms, S. Veronneau, M. Voet, G. Volckaert, T. R. Ward, R. Wysocki, G. S. Yen, K. Yu, K. Zimmermann, P. Philippsen, M. Johnston, and R. W. Davis. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906 https://doi.org/10.1126/science.285.5429.901
  73. Witzmann, F., J. Clack, C. Fultz, and B. Jarnot. 1995. Twodimensional electrophoretic mapping of hepatic and renal stress proteins. Electrophoresis 16: 451-459 https://doi.org/10.1002/elps.1150160173
  74. Yamamoto, Y., M. Nakajima, H. Yamazaki, and T. Yokoi. 2001. Cytotoxicity and apoptosis produced by troglitazone in human hepatoma cells. Life Sci. 70: 471-482 https://doi.org/10.1016/S0024-3205(01)01432-1
  75. Yang, B. K., D. H. Kim, S. C. Jeong, S. Das, Y. S. Choi, J. S. Shin, S. C. Lee, and C. H. Song. 2002. Hypoglycemic effect of a Lentinus edodes exo-polymer produced from a submerged mycelial culture. Biosci. Biotechnol. Biochem. 66: 937-942 https://doi.org/10.1271/bbb.66.937
  76. Yang, B. K., H. J. Lee, S. C. Jeong, W. J. Lim, and C. H. Song. 2005. Hypoglycemic effect of Collybia confluens exobiopolymer produced by submerged mycelial culture on diabetic rats. J. Microbiol. Biotechnol. 15: 136-140
  77. Yang, B. K., M. A. Wilson, K. Y. Cho, and C. H. Song. 2004. Hypoglycemic effect of exo- and endo-biopolymers produced by submerged mycelial culture of Ganoderma lucidum in streptozotocin-induced diabetic rats. J. Microbiol. Biotechnol. 14: 972-977
  78. Yan, L. J., R. L. Levine, and R. S. Sohal. 1997. Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl. Acad. Sci. USA 94: 11168-11172
  79. Zhu, B., H. Shen, J. Zhou, F. Lin, and Y. Hu. 2005. Effects of simvastatin on oxidative stress in streptozotocin-induced diabetic rats: A role for glomeruli protection. Nephron Exp. Nephrol. 101: e1-e8 https://doi.org/10.1159/000085712