Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames I: Element Formulation

강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 I: 요소개발

  • 황병국 (신화엔지니어링㈜) ;
  • 전성민 (공주대학교 건설환경공학부) ;
  • 김기동 (공주대학교 방재연구센터, 건설환경공학부) ;
  • 고만기 (공주대학교 방재연구센터, 건설환경공학부)
  • Published : 2007.12.31

Abstract

This study presents a non -prismatic beam element for modeling the elastic and inelastic behavior of the steel beam, which has the post-Northridge connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatic members with reduced beam section (RES) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Verification and calibration of the model are presented in a companion paper.

본 연구는 지진운동의 영향 하에서 강제 모멘트 골조로 이루어진 post-Northridge 연결부를 갖는 보의 탄성 및 비탄성 거동을 모델하기 위한 부등단면 보 요소를 제시한다. 단면감소 연결부를 갖는 부등단면 보의 탄성강성 행렬은 수치적분이 필요치 많은 수식으로 표현된다. 소성모델은 분포형이며 강체링크로 연결된 일련의 비선형 힌지로 구성 되어있고 경화법칙은 단조 및 임의 주기 하중에 대한 비탄성 거동과 국부좌굴의 효과를 고려할 수 있다. 모델의 대조와 검증은 동반논문에 제시되어있다.

Keywords

References

  1. 김기동, 고만기, 황병국, 배창규 (2004) RBS 연결부를 갖는 보에 대한 부등 단면 보 요소. 한국강구조학회 논문집, 제16권, 제6호, pp.833-846
  2. 황병국,전충하, 김기동, 고만기 (2007) 강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소. II: 모델의 검증. 한국방재학회논문집, 제7권, 제5호, pp. 37-46
  3. AISC (2005a) Seismic provisions for structural steel buildings. ANSI/AISC 341-2005, American Institute of Steel Construction, Inc., Chicago, IL
  4. AISC (2005b) Prequahned connections for special and intermediate steel moment frames for seismic applications. ANSI/AISC 358-05, American Institute of Steel Construction, Inc., Chicago, IL
  5. Chambers, J.J., Almudhafar, S., and Stenger, F. (2003) Effect of reduced beam section frame elements on stiffness of moment frames. J. Struct. Engrg., ASCE, Vol. 129, No.3, pp. 383-394 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(383)
  6. Chen, S.J., and Yeh, C.H. (1994) Enhancement of ductility of steel beam-to-column connections for seismic resistance. National Taiwan Institute of Technology, (presented at SSRC 1994 Annual Technical Session)
  7. Engelhardt, M.D., Winneberger, T., Zekany, A.J., and Potyraj, T.J. (1996) The Dogbone connection: Part II, Modern Steel Construction, 36 (8), AISC, Chicago, Illinois
  8. Faggiano, B., and Landolfo, R. (2003) Design criteria for RBS in MR frame retrofitting. Proc., the Conference on Behavior of Steel Structures in Seismic Areas, Italy, pp. 683-690
  9. FEMA (2000) Recommended seismic design criteria for new steel moment -frame buildings. FEMA 350, Federal Emergency Management Agency, Washington, D.C.
  10. Giberson, M.F. (1969) Two nonlinear beams with definition of ductility. J. Struc. Div., ASCE, Vol. 95, No.2, pp, 137-157
  11. Grubbs, K.V. (1997) The effects of the dogbone connection on the elastic stittness of steel moment frames. Master thesis, Dept. of Civ. Engrg., The University of Texas at Austin, Texas
  12. Mosaddad, B. and Powell, G.H. (1982) Computational models for cyclic plasticity rate dependence, and creep in finite element analysis. EERC Report No. 82/26, University of California, Berkeley
  13. Mroz, Z. (1967) An attempt to describe the behavior of metals under cyclic loads using a more general work hardening model. Acta Mechanica, Vol. 7, No. 2-3, pp. 199-212 https://doi.org/10.1007/BF01176668
  14. Przemieniecki, J.S. (1968) Theory of matrix structural analysis. McGraw-Hill Book Co., New York, N.Y.
  15. Youssef, N., Bonowitz, D., and Gross, J. (1995) A survey of steel moment -resisting frame buildings affected by the 1994 Northridge earthquake. NIST Rep. No. NISTIR 5625, National Institute of Standards and Technology, United States Dept. of Commerce Technology Administration, Washington, D.C.