Dexamethasone Does Not Inhibit Airway CXC Chemokine Expression and Neutrophilia in a Murine Model of Asthma - Mechanism of Steroid Resistance in Asthma

  • Lee, Young-Man (Department of Immunology, Chonbuk National University Medical School) ;
  • Kang, Nam-In (Department of Immunology, Chonbuk National University Medical School) ;
  • Lee, Hern-Ku (Department of Immunology, Chonbuk National University Medical School)
  • 발행 : 2007.03.30

초록

Background: Although glucocorticoids (GCs) are effective in controlling asthma in the majority of patients, a subset of asthmatics fails to demonstrate a satisfactory response, even to systemic GC therapy. This population is referred to as being "steroid-resistant". The actual mechanism underlying steroid resistance in asthma remains to be elucidated. Methods: We have investigated how dexamethasone (DEX) regulates asthmatic phenotypes in a murine model of asthma, in which mice received i.p. immunization twice, followed by two bronchoprovocations with aerosolized OVA with a one-week interval, which we have recently described. Results: Pretreatment with DEX resulted in an inhibition of NF-${\kappa}B$ activation in asthmatic lungs, and also inhibited bronchoalveolar lavage (BAL) levels of NF-${\kappa}B$-dependent cytokines such as TNF-${\alpha}$ and CC chemokines [eotaxin and monocyte chemotactic protein (MCP)-1]. DEX was effective in suppressing airway hyperresponsiveness (AHR) at 10 h, Th2-dependent asthmatic phenotypes such as airway eosinophilia, BAL levels of Th2 cytokines (IL-5 and IL-13), and mucin production. However, DEX failed to suppress BAL levels of CXC chemokines [macrophage inflammatory protein-2 (MIP-2) and keratinocyte-derived chemokine (KC)] and airway neutrophilia. Conclusion: Airway neutrophilia is among the phenomena observed in patients with severe GC-resistant asthma. This study will provide insight into the molecular basis for airway neutrophila seen in steroid-resistant asthma. Further studies are required to delineate the underlying mechanism of CXC chemokine expression in asthma.

키워드

참고문헌

  1. Barnes PJ: Efficacy of inhaled corticosteroids in asthma. J Allergy Clin Immunol 102;531-538, 1998 https://doi.org/10.1016/S0091-6749(98)70268-4
  2. Burke C, Power CK, Norris A, Condez A, Schmekei B, Poulter LW: Lung function and immunopathological changes after inhaled corticosteroid therapy in asthma. Eur Respir J 5;73-79, 1992
  3. Djukanovic R, Wilson JW, Britten KM, Wilson SJ, Walls AF, Roche WR, Howarth PH, Holgate ST: Effect of an inhaled corticosteroid on airway inflammation and symptoms in asthma. Am Rev Respir Dis 145;669-674, 1992 https://doi.org/10.1164/ajrccm/145.3.669
  4. Jeffery PK, Godfrey RW, Adelroth E, Nelson F, Rogers A, Johansson SA: Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma. A quantitative light and electron microscopic study. Am Rev Respir Dis 145;890-899, 1992 https://doi.org/10.1164/ajrccm/145.4_Pt_1.890
  5. Laitinen LA, Laitinen A, Haahtela T: A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta 2-agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomized, double-blind, parallel-group controlled trial. J Allergy Clin Immunol 90;32-42, 1992 https://doi.org/10.1016/S0091-6749(06)80008-4
  6. Bhagat RG, Grunstein MM: Effect of corticosteroids on bronchial responsiveness to methacholine in asthmatic children. Am Rev Respir Dis 131;902-906, 1985
  7. Fabbri LM, Chiesura-Corona P, Dalvecchio L, Digiacomo GR, Zocca E, Demarzo N, Maestrelli P, Mapp CE: Prednisone inhibits late asthmatic reactions and the associated increase in airway responsiveness induced by toluene-diisocyanate in sensitized subjects. Am Rev Respir Dis 132;1010- 1014, 1985
  8. Schwartz HJ, Lowell FC, Melby JC: Steroid resistance in bronchial asthma. Ann Intern Med 69;493-499, 1968 https://doi.org/10.7326/0003-4819-69-3-493
  9. Carmichael J, Paterson IC, Diaz P, Crompton GK, Kay AB, Grant IW: Corticosteroid resistance in chronic asthma. Br Med J 282;1419-1422, 1981 https://doi.org/10.1136/bmj.282.6274.1419
  10. Barnes PJ: Efficacy of inhaled corticosteroids in asthma. J Allergy Clin Immunol 102;531-538, 1998 https://doi.org/10.1016/S0091-6749(98)70268-4
  11. Barnes PJ, Greening AP, Crompton GK: Glucocorticoid resistance in asthma. Am J Respir Crit Care Med 152; S125-140, 1995 https://doi.org/10.1164/ajrccm/152.6_Pt_2.S125
  12. Irusen E, Matthews JG, Takahashi A, Barnes PJ, Chung KF, Adcock IM: p38 mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 109;649-657, 2002 https://doi.org/10.1067/mai.2002.122465
  13. Hamid QA, Wenzel SE, Hauk PJ, Tsicopoulos A, Wallaert B, Lafitte JJ, Chrousos GP, Szefler SJ, Leung DY: Increased glucocorticoid receptor beta in airway cells of glucocorticoidinsensitive asthma. Am J Respir Crit Care Med 159;1600- 1604, 1999 https://doi.org/10.1164/ajrccm.159.5.9804131
  14. Adcock IM, Lane SJ, Brown CA, Lee TH, Barnes PJ: Abnormal glucocorticoid receptor/AP-1 interaction in steroid resistant asthma. J Exp Med 182;1951-1958, 1995 https://doi.org/10.1084/jem.182.6.1951
  15. Sousa AR, Lane SJ, Soh C, Lee TH: In vivo resistance to corticosteroids in bronchial asthma is associated with enhanced phosyphorylation of JUN N-terminal kinase and failure of prednisolone to inhibit JUN N-terminal kinase phosphorylation. J Allergy Clin Immunol 104;565-574, 1999 https://doi.org/10.1016/S0091-6749(99)70325-8
  16. Matthews JG, Ito K, Barnes PJ, Adcock IM: Defective glucocorticoid receptor nuclear translocation and altered histone acetylation patterns in glucocorticoid-resistant patients. J Allergy Clin Immunol 113;1100-1108, 2004 https://doi.org/10.1016/j.jaci.2004.03.018
  17. Choi IW, Kim S, Kim YS, Ko HM, Im SY, Kim JH, You HJ, Lee YC, Lee JH, Park YM, Lee HK: TNF-$\alpha$ induces the late-phase airway hyperresponsiveness and airway inflammation through cytosolic phospholipase A2 activation. J Allergy Clin Immunol 116;537-543, 2005 https://doi.org/10.1016/j.jaci.2005.05.034
  18. Eum SY, Maghni K, Hamid Q, Campbell H, Eidelman DH, Martin JG: Involvement of the cysteinyl-leukotrienes in allergen-induced airway eosinophilia and hyperresponsiveness in the mouse. Am J Respir Cell Mol Biol 28;25-32, 2003 https://doi.org/10.1165/rcmb.4532
  19. Takeda K, Hamelmann E, Joetham A, Shultz LD, Larsen GL, Irvin CG, Gelfand EW: Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med 186;449-454, 1997 https://doi.org/10.1084/jem.186.3.449
  20. Choi IW, Kim YS, Kim DK, Choi JH, Seo KH, Im SY, Kwon KS, Lee MS, Ha TY, Lee HK: Platelet-activating factor?mediated NF-$\kappa$B dependency of a late anaphylactic reaction. J Exp Med 198;145-151, 2003 https://doi.org/10.1084/jem.20022129
  21. Choi IW, Kim DK, Ko HM, Lee HK: Administration of antisense phosphorothioate oligonucleotide to the p65 subunit of NF-$\kappa$B inhibits established asthmatic reaction in mice. Int Immunopharmacol 20;1817-1828, 2004
  22. Kelner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA, Copeland NG, Bazan JF, Moore KW, Schall TJ, Zlotnik A: Lymphotactin: a cytokine that represents a new class of chemokine. Science 266;1395-1399, 1994 https://doi.org/10.1126/science.7973732
  23. Leonard EJ, Yoshimura T: Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today 11;97-101, 1990 https://doi.org/10.1016/0167-5699(90)90035-8
  24. Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Hojberg B, Lindquist L, Wretlind B, Bakhiet M, Link H. Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun 67 2590-2601, 1999
  25. Oquendo P, Alberta J, Wen DZ, Graycar JL, Derynck R, Stiles CD The platelet-derived growth factor-inducible KC gene encodes a secretory protein related to platelet $alpha$-granule proteins. J Biol Chem 264 4133-4137, 1989
  26. Nakagawa H, Komorita N, Shibata F, Ikesue A, Konishi K, Fujioka M, Kato H: Identification of cytokine-induced neutrophil chemoattractants (CINC), rat GRO/CINC-2$\alpha$ and CINC-2$\beta$, produced by granulation tissue in culture:purification, complete amino acid sequences and characterization. Biochem J 301;545-550, 1994 https://doi.org/10.1042/bj3010545
  27. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91;521-530, 1997 https://doi.org/10.1016/S0092-8674(00)80438-9
  28. Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ: Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 160:1532-1539, 1999 https://doi.org/10.1164/ajrccm.160.5.9806170
  29. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW: Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160;1001-1008, 1999 https://doi.org/10.1164/ajrccm.160.3.9812110
  30. Gibson PG, Simpson JL, Saltos N: Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 119; 1329-1336, 2001 https://doi.org/10.1378/chest.119.5.1329
  31. Sur S, Crotty TB, Kephart GM, Hyma BA, Colby TV, Reed CE, Hunt LW, Gleich GJ: Sudden-onset fatal asthma: A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Resp Dis 148; 713-719, 1993 https://doi.org/10.1164/ajrccm/148.3.713
  32. Tonnel AB, Gosset P, Tillie-Leblond I: Characteristics of the inflammatory response in bronchial lavage fluids from patients with status asthmaticus. Int Arch Allergy Immunol 124;267-271, 2001 https://doi.org/10.1159/000053729
  33. Carroll NG, Mutavdzic S, James AL: Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 57;677-682, 2002 https://doi.org/10.1136/thorax.57.8.677
  34. Yoshida N, Yoshikawa T, Nakamura Y, Takenaka S, Sakamoto K, Manabe H, Nakagawa S, Kondo M: Methylprednisolone inhibits neutrophil-endothelial cell interactions induced by interleukin-1beta under flow conditions. Life Sci 60;2341-2347, 1997 https://doi.org/10.1016/S0024-3205(97)00290-7
  35. Filep JG, Delalandre A, Payette Y, Foldes-Filep E: Glucocorticoid receptor regulates expression of L-selectin and CD11/CD18 on human neutrophils. Circulation 96;295-301, 1997 https://doi.org/10.1161/01.CIR.96.1.295
  36. Fukushima K, Ando M, Ito K, Suga M, Araki S: Stimulusand cumulative dose-dependent inhibition of O2- production by polymorphonuclear leukocytes of patients receiving corticosteroids. J Clin Lab Immunol 33;117-123, 1990
  37. Hirasawa N, Watanabe M, Mue S, Watanabe K, Tsurufuji S, Ohuchi K: Induction of neutrophil infiltration by rat chemotactic cytokine (CINC) and its inhibition by dexamethasone in rats. Inflammation 16;187-196, 1992 https://doi.org/10.1007/BF00918958
  38. Wilson SJ, Wallin A, Della-Cioppa G, Sandstrom T, Holgate ST: Effects of budesonide and formoterol on NF-$\kappa$B, adhesion molecules, and cytokines in asthma. Am J Respir Crit Care Med 164;1047-1052, 2001 https://doi.org/10.1164/ajrccm.164.6.2010045
  39. Liles WC, Dale DC, Klebanoff SJ: Glucocorticoids inhibit apoptosis of human neutrophils. Blood 86;3181-3188, 1995
  40. Meagher LC, Cousin JM, Seckl JR, Haslett C: Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 156;4422-4428, 1996
  41. Strickland I, Kisich K, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ, Leung DY: High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 193;585-594, 2001 https://doi.org/10.1084/jem.193.5.585
  42. Chakir J, Hamid Q, Bosse M, Boulet LP, Laviolette M: Bronchial inflammation in corticosteroid-sensitive and corticosteroid- resistant asthma at baseline and on oral corticosteroid treatment. Clin Exp Allergy 32; 578-582, 2002 https://doi.org/10.1046/j.0954-7894.2002.01323.x
  43. Bentley AM, Hamid Q, Robinson DS, Schotman E, Meng Q, Assoufi B, Kay Ab, Durham SR: Prednisolone treatment in asthma. Reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med 153;551-556, 1996 https://doi.org/10.1164/ajrccm.153.2.8564096
  44. Hauber HP, Gotfried M, Newman K, Danda R, Servi RJ, Christodoulopoulos P, Hamid Q: Effect of HFA-flunisolide on peripheral lung inflammation in asthma. J Allergy Clin Immunol 112;58-63, 2003 https://doi.org/10.1067/mai.2003.1612
  45. Nguyen LT, Lim S, Oates T, Chung KF: Increase in airway neutrophils after oral but not inhaled corticosteroid therapy in mild asthma. Respir Med 99;200-207, 2005 https://doi.org/10.1016/j.rmed.2004.06.007
  46. Fukakusa M, Bergeron C, Tulic MK, Fiset PO, Al Dewachi O, Laviolette M, Hamid Q, Chakir J: Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-gamma-inducible protein 10 expression in asthmatic airway mucosa. J Allergy Clin Immunol 115;280-286, 2005 https://doi.org/10.1016/j.jaci.2004.10.036
  47. Widmer U, Manogue KR, Cerami A, Sherry B: Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1$\alpha$, and MIP-1$\beta$, members of the chemokine superfamily of proinflammatory cytokines. J Immunol 150;4996-5012, 1993
  48. Ohmori Y, Fukumoto S, Hamilton TA: Two structurally distinct $\kappa$B sequence motifs cooperatively control LPSinduced KC gene transcription in mouse macrophages. J Immunol 155;3593-3600, 1995
  49. Smart SJ, Casale TB: TNF-$\alpha$-induced transendothelial neutrophil migration is IL-8 dependent. Am J Physiol 266;L238-L245, 1994
  50. Tessier PA, Neccache PH, Clark-Lewis I, Gladue RP, Neote KS, McColl SR: Chemokine networks in vivo: involvement of C-X-C and C-C chemokines in neutrophil extravasation in vivo in response to TNF-alpha. J Immunol 159;3595-3602, 1997
  51. McColl SR, Clark-Lewis I: Inhibition of murine neutrophil recruitment in vivo by CXC chemokine receptor antagonists. J Immunol 163;2829-2835, 1999
  52. Liu Q, Wang Y, Thorlacius H: Dexamethasone inhibits tumor necrosis factor-$\alpha$ induced expression of macrophage inflammatory protein-2 and adhesion of neutrophils to endothelial cells. Biochem Biophys Res Commun 271;364-367, 2000 https://doi.org/10.1006/bbrc.2000.2641