DOI QR코드

DOI QR Code

Proposal and Characterization of Ring Resonator with Sharp U-Turns Using an SOI-Based Photonic Crystal Waveguide

  • Omura, Yasuhisa (Department of Electronics, Faculty of Engineering, Kansai University) ;
  • Iida, Yukio (Department of Electronics, Faculty of Engineering, Kansai University) ;
  • Urakawa, Fumio (Department of Electronics, Faculty of Engineering, Kansai University) ;
  • Ogawa, Yoshifumi (Department of Electronics, Faculty of Engineering, Kansai University)
  • Published : 2007.06.30

Abstract

We propose and experimentally demonstrate a ring resonator with sharp U-turns fabricated on a silicon-on-insulator (SOI) substrate; the resonator was designed as a key part of an optical, dynamic data storage device. We discuss the optical properties of the fabricated ring resonator from the viewpoint of equi-frequency-contour behavior in a dispersion space. We successfully characterize its optical characteristics on the basis of photonic crystal physics. It is suggested that the photonic ring resonator will be applicable to optical, dynamic memory devices for optical communication systems.

Keywords

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, 'Photnic Crystals -Molding the Flow of Light,' Princeton University Press, Princeton, NJ, 1995
  2. K. Sakoda, 'Optical Properties of Photonic crystals,' Springer, New York, 2001
  3. E. Yablonovitch, 'Inhibited Spontaneous Emission in Solid-State Physics and Electronics,' Phys. Rev. Lett., vol. 58, pp. 2059-2062 (1987) https://doi.org/10.1103/PhysRevLett.58.2059
  4. Y. Iida, Y. Omura, Y. Ogawa, T. Kinoshita, and M. Tsuji, 'Ring Resonator with Sharp U-Turns Using a SOI-Based Photonic Crystal Waveguide with Normal Single-Missing-Hole-Line Defect,' Proc. Of. SPIE, Vol. 5277, pp. 206-214, 2003
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, 'Investigation of High-Q Channel Drop Filters Using Donor-Type Defects in Two-Dimensional Photonic Crystal Slabs,' Appl. Phys. Lett., Vol. 83, No. 8, pp. 1512-1514, 2003 https://doi.org/10.1063/1.1604179
  6. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, 'Optical Bistable Switching in Nonlinear Photonic crystals,' Phys. Rev. E, Vol. 66, pp. 055601-4, 2002 https://doi.org/10.1103/PhysRevE.66.055601
  7. H. Takano, Y. Akahane, T. Asano, and S. Noda, 'In-Plane-Type Channel Drop Filter in a Two-Dimensional Photonic Crystal Slab,' Appl. Phys. Lett., Vol. 84, No. 13, pp. 2226-2228, 2004 https://doi.org/10.1063/1.1689742
  8. A. I. Cabuz, E. Centeno, and D. Cassagne, 'Superprism Effect in Bidimensional Rectangular Photonic Crystals,' Appl. Phys. Lett., Vol. 84, No. 12, pp. 2031-2033, 2004 https://doi.org/10.1063/1.1688981
  9. X. Yu and S. Fan, 'Bends and Splitters for Self-Collimated Beams in Photonic Crystals,' Appl. Phys. Lett., Vol. 83, No. 16, p. 3251-3253, 2003 https://doi.org/10.1063/1.1621736
  10. H. Kosada, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, 'Superprism Phenomena in Photonic Crystals,' Phys. Rev. B, Vol. 58, No. 16, p. 10096-10099, 1998 https://doi.org/10.1103/PhysRevB.58.R10096
  11. X. Hu, Y. Shen, X. Liu, R. Fu, and J. Zi, 'Superlensing Effect in Liquid Surface Waves,' Phys. Rev. E, Vol. 69, pp. 030201-4, 2004 https://doi.org/10.1103/PhysRevE.69.030201
  12. T. Matsumoto and T. Baba, 'Photonic Crystal k-Vector superprism,' J. Lightwave Technol. Vol.22, No. 3, pp. 917-922, 2004 https://doi.org/10.1109/JLT.2004.824537
  13. L. Wu, M. Michael, and T. F. Krauss, 'Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator,' J. Lightwave Technol. Vol.21, No. 2, pp. 561-566, 2003 https://doi.org/10.1109/JLT.2003.808773
  14. Z. Y. Li, and L.L. Lin, 'Evaluation of Lensing in Photonic Crystal Slabs Exhibiting Negative Refraction,' Phys. Rev. B, Vol. 68, pp. 245110-7, 2004 https://doi.org/10.1103/PhysRevB.68.245110
  15. H. Kosaka, T. Kawashima, A.Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, 'Self-Collimating Phenomena in Photonic Crystals,' Appl. Phys. Lett., Vol. 74, No. 9, pp. 1212-1214, 1999 https://doi.org/10.1063/1.123502
  16. J. Witzens, M Loncar, and A. Schere, 'Self-Collimation in Planar Photonic Crystals,' IEEE. J. Selected Topics. Quantu. Electrons, Vol. 8, No. 6, pp. 1246-1257, 2002 https://doi.org/10.1109/JSTQE.2002.806693
  17. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J Murakowski, 'Dispersion-Based Optical Routing in Photonic Crystals,' Opt. Lett., Vol. 29, No. 1, pp. 50-52, 2004 https://doi.org/10.1364/OL.29.000050
  18. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, and U. Oesterle, 'Improved 60 Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,' IEEE J. Lightwave Tech., vol. 20, pp. 1198-1203 (2002) https://doi.org/10.1109/JLT.2002.800345
  19. X. Yu and S. Fan, 'Bends and Splitters for Self-collimated Beams in Photonic Crystals,' Appl. Phys. Lett., vol. 83, pp. 3251-3253 (2003) https://doi.org/10.1063/1.1621736
  20. T. Matsumoto and T. Baba, 'Photonic Crystal k-Vector Superprism,' IEEE J. Lightwave Tech., vol . 22, pp. 917-922 (2004) https://doi.org/10.1109/JLT.2004.824537
  21. X. Yu and S. Fan, 'Anomalous Reflections at Photonic Crystal Surfaces,' Phys. Rev. E, vol. 70, pp. 055601-055605, 2004 https://doi.org/10.1103/PhysRevE.70.055601
  22. Y. Ogawa, Y. Iida, and Y. Omura,'Feasibility Study on Self-Collimated Light-Focusing Device Using 2-D Photonic Crystal with a Parallelogram Lattice,' Ext. Abstract, Int. Conf. on Solid State Devices and Materials, Tokyo, pp. 584-585, Sept. 2004
  23. Y. Ogawa, Y. Iida and Y. Omura, 'Asymmetrical Transmission of Light Waves In Self-Collimated Light-Focusing Device (LFD) Using 2-D Photonic Crystal with a Parallelogram Lattice,' Tech. Dig. 8th Int. Symp. Contemporary Photonics Technology, Tokyo, p. 131, 2005