References
-
Y. Aoyama, Complete local
$(S_{n-1})$ rings of type n${\ge}$ 3 are Cohen-Macaulay, Proc. Japan Acard. Ser. A Math. Sci. 70 (1994), no. 3, 80-83 https://doi.org/10.3792/pjaa.70.80 - H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28 https://doi.org/10.1007/BF01112819
- W. Bruns, The Evans- Griffith syzygy theorem and Bass numbers, Proc. Amer. Math. Soc. 115 (1992), no. 4, 939-946 https://doi.org/10.2307/2159338
- D. Costa, C. Huneke, and M. Miller, Complete local domains of type two are Cohen-Macaulay, Bull. London Math. Soc. 17 (1985), no. 1, 29-31 https://doi.org/10.1112/blms/17.1.29
-
H. B. Foxby, On the
${\mu}^i$ in a minimal injective resolution II, Math. Scand. 41 (1977), no. 1, 19-44 https://doi.org/10.7146/math.scand.a-11700 - T. Kawasaki, Local rings of relatively small type are Cohen-Macaulay, Proc. Amer. Math. Soc. 122 (1994), 703-709 https://doi.org/10.2307/2160744
- K. Lee, A note on types of Noetherian local rings, Bull. Korean Math. Soc. 39 (2002), no. 4, 645-652 https://doi.org/10.4134/BKMS.2002.39.4.645
- T. Marley, Unmixed local rings of type two are Cohen-Macaulay, Bull. London Math. Soc. 23 (1991), no. 1, 43-45 https://doi.org/10.1112/blms/23.1.43
- H. Matsumura, Commutative ring theory, Camb. Study Adv. Math. 8, Cambridge 1986
- P. Roberts, Homological invariants of modules over commutative rings, Sem. Math. Sup., Presses Univ. Montreal, Montreal, 1980
- P. Roberts, Rings of type 1 are Gorenstein, Bull. London Math. Soc. 15 (1983), no. 1, 48-50 https://doi.org/10.1112/blms/15.1.48
- W. V. Vasconcelos, Divisor theory in module categories, Math. Studies 14, North Holland Publ. Co., Amsterdam, 1974
Cited by
- SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.625