DOI QR코드

DOI QR Code

ON OPTIMALITY CONDITIONS FOR ABSTRACT CONVEX VECTOR OPTIMIZATION PROBLEMS

  • Lee, Gue-Myung (DEPARTMENT OF APPLIED MATHEMATICS PUKYONG NATIONAL UNIVERSITY) ;
  • Lee, Kwang-Baik (DEPARTMENT OF APPLIED MATHEMATICS PUKYONG NATIONAL UNIVERSITY)
  • 발행 : 2007.07.30

초록

A sequential optimality condition characterizing the efficient solution without any constraint qualification for an abstract convex vector optimization problem is given in sequential forms using subdifferentials and ${\epsilon}$-subdifferentials. Another sequential condition involving only the subdifferentials, but at nearby points to the efficient solution for constraints, is also derived. Moreover, we present a proposition with a sufficient condition for an efficient solution to be properly efficient, which are a generalization of the well-known Isermann result for a linear vector optimization problem. An example is given to illustrate the significance of our main results. Also, we give an example showing that the proper efficiency may not imply certain closeness assumption.

키워드

참고문헌

  1. A. Brondsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611 https://doi.org/10.2307/2033889
  2. K. L. Chew and E. U. Choo, Pseudolinearity and efficiency, Math. Program. 28 (1984), no. 2, 226-239 https://doi.org/10.1007/BF02612363
  3. E. U. Choo, Proper efficiency and the linear fractional vector maximum problem, Oper. Res. 32 (1984), 216-220 https://doi.org/10.1287/opre.32.1.216
  4. H. W. Corley, A new scalar equivalence for Pareto optimization, IEEE Trans. Automat. Control 25 (1980), no. 4, 829-830 https://doi.org/10.1109/TAC.1980.1102401
  5. M. Ehrgott, Multicriteria Optimization, Lecture Notes in Economics and Mathematical Systems 491, Springer-Verlag Berlin Heidelberg, 2000
  6. B. M. Glover, V. Jeyakumar, and A. M. Rubinov, Dual conditions characterizing optimality for convex multi-objective programs, Math. Program. 84 (1999), no. 1, Ser. A, 201-217 https://doi.org/10.1007/s10107980013a
  7. T. R. Gulati and M. A. Islam, Efficiency in linear fractional vector maximization problem with nonlinear constraints, Optimization 20 (1989), no. 4, 477-482 https://doi.org/10.1080/02331938908843465
  8. T. R. Gulati and M. A. Islam, Efficiency and proper efficiency in nonlinear vector maximum problems, European J. Oper. Res. 44 (1990), no. 3, 373-382 https://doi.org/10.1016/0377-2217(90)90248-A
  9. J. B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Volumes I and II, Springer-Verlag, Berlin Heidelberg, 1993
  10. H. Isermann, Proper efficiency and the linear vector maximum problem, Oper. Res. 22 (1974), no. 1, 189-191 https://doi.org/10.1287/opre.22.1.189
  11. J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Verlag Peter D. Lang, Frankfurt am Main, Germany, 1986
  12. V. Jeyakumar, Asymptotic dual conditions characterizing optimality for convex programs, J. Optim. Theory Appl. 93 (1997), no. 1, 153-165 https://doi.org/10.1023/A:1022606002804
  13. V. Jeyakumar, G. M. Lee, and N. Dinh, New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs, SIAM J. Optim. 14 (2003), no. 2, 534-547 https://doi.org/10.1137/S1052623402417699
  14. V. Jeyakumar, G. M. Lee, and N. Dinh, Solution sets of convex vector minimization problems, to appear in European J. Oper. Res
  15. V. Jeyakumar, A. M. Rubinov, B. M. Glover, and Y. Iskizuka, Inequality systems and global optimization, J. Math. Anal. Appl. 202 (1996), no. 3, 900-919 https://doi.org/10.1006/jmaa.1996.0353
  16. V. Jeyakumar and A. Zaffaroni, Asymptotic conditions for weak and proper optimality in infinite dimensional convex vector optimization, Numer. Funct. Anal. Optimiz. 17 (1996), no. 3-4, 323-343 https://doi.org/10.1080/01630569608816697
  17. G. M. Lee, On efficiency in nonlinear fractional vector maximization problem, Optimization 25 (1992), no. 1, 47-52 https://doi.org/10.1080/02331939208843806
  18. L. Thibault, Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J. Control Optim. 35 (1997), no. 4, 1434-1444 https://doi.org/10.1137/S0363012995287714
  19. Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Academic Press, Inc., 1985

피인용 문헌

  1. Optimality theorems for convex semidefinite vector optimization problems vol.71, pp.12, 2009, https://doi.org/10.1016/j.na.2009.05.064